• Photonic Sensors
  • Vol. 10, Issue 3, 215 (2020)
Wenghong LIM1, Yuenkiat YAP1、2, Choonkong LAI1, Wuyi CHONG1、*, and Harith AHMAD1、3
Author Affiliations
  • 1Photonics Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 2Heriot-Watt University Malaysia, Putrajaya 62200, Malaysia
  • 3Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
  • show less
    DOI: 10.1007/s13320-020-0584-3 Cite this Article
    Wenghong LIM, Yuenkiat YAP, Choonkong LAI, Wuyi CHONG, Harith AHMAD. Graphene Oxide Functionalized Optical Planar Waveguide for Water Content Measurement in Alcohol[J]. Photonic Sensors, 2020, 10(3): 215 Copy Citation Text show less
    References

    [1] Y. Y. Liang, “Automation of Karl Fischer water titration by flow injection sampling,” Analytical Chemistry, 1990, 62(22): 2504–2506.

    [2] C. A. Weatherly, R. M. Woods, and D. W. Armstrong, “Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection,” Journal of Agricultural and Food Chemistry, 2014, 62(8): 1832–1838.

    [3] Y. N. Wijaya, J. Kim, S. H. Hur, S. H. Park, and M. H. Kim, “Metal nanocrystal-based sensing platform for the quantification of water in water-ethanol mixtures,” Sensors and Actuators B: Chemical, 2018, 263: 59–68.

    [4] F. B. Xiong and D. Sisler, “Determination of low-level water content in ethanol by fiber-optic evanescent absorption sensor,” Optics Communications, 2010, 283(7): 1326–1330.

    [5] F. K. Coradin, G. R. C. Possetti, R. C. Kamikawachi, M. Muller, and J. L. Fabris, “Etched fiber Bragg gratings sensors for water-ethanol mixtures: a comparative study,” Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2010, 9(2): 131–143.

    [6] B. C. Kim, T. Yamamoto, and Y. H. Kim, “In-line measurement of water content in ethanol using a pva-coated quartz crystal microbalance,” Sensors, 2014, 14(1): 1564–1575.

    [7] S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sensors and Actuators B: Chemical, 2011, 153(1): 194–198.

    [8] W. Y. Chong, W. H. Lim, Y. K. Yap, C. K. Lai, R. M. De La Rue, and H. Ahmad, “Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation,” Scientific Reports, 2016, 6: 23813.

    [9] W. H. Lim, Y. K. Yap, W. Y. Chong, and H. Ahmad, “All-optical graphene oxide humidity sensors,” Sensors, 2014, 14(12): 24329–24337.

    [10] W. H. Lim, Y. K. Yap, W. Y. Chong, C. H. Pua, N. M. Huang, R. M. De La Rue, et al., “Graphene oxide-based waveguide polariser: from thin film to quasi-bulk,” Optics Express, 2014, 22(9): 11090–11098.

    [11] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, et al., “Preparation and characterization of graphene oxide paper,” Nature, 2007, 448(7152): 457–460.

    [12] R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science, 2012, 335(6067): 442–444.

    [13] D. W. Boukhvalov, M. I. Katsnelson, and Y. W. Son, “Origin of anomalous water permeation through graphene oxide membrane,” Nano Letters, 2013, 13(8): 3930–3935.

    [14] N. Wei, X. Peng, and Z. Xu, “Understanding water permeation in graphene oxide membranes,” ACS Applied Materials & Interfaces, 2014, 6(8): 5877–5883.

    [15] G. Eda, A. Nathan, P. W-bkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, et al., “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Applied Physics Letters, 2013, 102(13): 133108.

    [16] H. M. Huang, H. Lim, C. H. Chia, M. A. Yarmo, and M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” International Journal of Nanomedicine, 2011, 6: 3443.

    [17] P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, et al., “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology, 2013, 24(7): 075601.

    [18] M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla, et al., “The role of intercalated water in multilayered graphene oxide,” ACS Nano, 2010, 4(10): 5861–5868.

    [19] D. W. Wang, A. Du, E. Taran, G. Q. Lu, and I. R. Gentle, “A water-dielectric capacitor using hydrated graphene oxide film,” Journal of Materials Chemistry, 2012, 22(39): 21085–21091.

    [20] I. Jung, D. Dikin, S. Park, W. Cai, S. L. Mielke, and R. S. Ruoff, “Effect of water vapor on electrical properties of individual reduced graphene oxide sheets,” The Journal of Physical Chemistry C, 2008, 112(51): 20264–20268.

    [21] F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, et al., “Tunable bandgap in graphene by the controlled adsorption of water molecules,” Small, 2010, 6(22): 2535–2538.

    [22] A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale, 2013, 5(12): 5426–5434.

    [23] P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” The Journal of Physical Chemistry A, 2008, 112(29): 6512–6516.

    [24] S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, and A. K. Soper, “Molecular segregation observed in a concentrated alcohol-water solution,” Nature, 2002, 416(6883): 829–832.

    [25] A. K. Soper and J. L. Finney, “Hydration of methanol in aqueous solution,” Physical Review Letters, 1993, 71(26): 4346.

    [26] C. Liu, E. Bonaccurso, and H. J. Butt, “Evaporation of sessile water/ethanol drops in a controlled environment,” Physical Chemistry Chemical Physics, 2008, 10(47): 7150–7157.

    Wenghong LIM, Yuenkiat YAP, Choonkong LAI, Wuyi CHONG, Harith AHMAD. Graphene Oxide Functionalized Optical Planar Waveguide for Water Content Measurement in Alcohol[J]. Photonic Sensors, 2020, 10(3): 215
    Download Citation