• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071604 (2020)
Fenfen Liu1、2, Shuxuan Cao1, and Junhai Liu1、*
Author Affiliations
  • 1College of Physics, Qingdao University, Qingdao, Shandong 266071, China
  • 2Aviation Foundation College, Aeronautical University, Yantai, Shandong 264001, China
  • show less
    DOI: 10.3788/LOP57.071604 Cite this Article Set citation alerts
    Fenfen Liu, Shuxuan Cao, Junhai Liu. Research of Yb-Doped Rare-Earth Calcium Oxyborate Crystal Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071604 Copy Citation Text show less
    References

    [1] Mougel F, Dardenne K, Aka G et al. Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal[J]. Journal of the Optical Society of America B, 16, 164-172(1999).

    [2] Aron A, Aka G, Viana B et al. Spectroscopic properties and laser performances of Yb∶YCOB and potential of the Yb: LaCOB material[J]. Optical Materials, 16, 181-188(2001).

    [3] Kr nkel C, Peters R, Petermann K et al. Efficient continuous-wave thin disk laser operation of Yb: Ca4YO(BO3)3 in E∥Z and E∥X orientations with 26 W output power[J]. Journal of the Optical Society of America B, 26, 1310-1314(2009).

    [4] Hammons D A, Eichenholz J M, Ye Q et al. Laser action in Yb 3+: YCOB (Yb 3+: YCa4O(BO3)3)[J]. Optics Communications, 156, 327-330(1998).

    [5] Krupke W F. Ytterbium solid-state lasers. The first decade[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1287-1296(2000).

    [6] Zhang H, Meng X, Wang P et al. Slope efficiency of up to 73% for Yb∶Ca4 YO(BO3)3 crystal laser pumped by a laser diode[J]. Applied Physics B: Lasers and Optics, 68, 1147-1149(1999).

    [7] Shah L, Ye Q, Eichenholz J M et al. Laser tunability in Yb 3+:YCa4O(BO3)3 (Yb∶YCOB)[J]. Optics Communications, 167, 149-153(1999).

    [8] Druon F. Aug F, Balembois F, et al. Efficient, tunable, zero-line diode-pumped, continuous-wave Yb 3+: Ca4LnO(BO3)3 (Ln=Gd, Y) lasers at room temperature and application to miniature lasers[J]. Journal of the Optical Society of America B, 17, 18-22(2000).

    [9] Valentine G J, Kemp A J. Birkin D J L, et al. Femtosecond Yb∶YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror[J]. Electronics Letters, 36, 1621-1623(2000).

    [10] Druon F, Balembois F, Georges P et al. 90 fs pulse generation from a mode-locked diode-pumped Yb 3+:Ca4GdO(BO3)3 laser[J]. Optics Letters, 25, 423-425(2000).

    [11] Khamaganova T N, Trunov V K, Dzhurinskiy B F. Crystal structure of calcium samarium oxyborate Sm2Ca8O2(BO3)6[J]. Russian Journal of Inorganic Chemistry, 36, 855-857(1991).

    [12] Norrestam R, Nygren M, Bovin J O. Structural investigations of new calcium - rare earth (R) oxyborates with the composition Ca4RO(BO3)3[J]. Chemistry of Materials, 4, 737-743(1992).

    [13] Dirksen G J, Blasse G. Tetracalcium gadolinium oxoborate (Ca4GdO(BO3)3) as a new host lattice for luminescent materials[J]. Journal of Alloys and Compounds, 191, 121-126(1993).

    [14] Aka G, Kahn-Harari A, Vivien D et al. ChemInform abstract: a new non-linear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB)[J]. ChemInform, 28, 727-736(2010).

    [15] Iwai M, Kobayashi T, Furuya H et al. Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material[J]. Japanese Journal of Applied Physics, 36, L276-L279(1997).

    [16] Lebedev V A, Voroshilov I V, Gavrilenko A N et al. Kinetic and spectroscopic investigations of Yb∶YCa4O(BO3)3 (Yb∶YCOB) single crystals[J]. Optical Materials, 14, 171-173(2000).

    [17] Balembois F, Georges P et al. Efficient and tunable continuous-wave diode-pumped Yb 3+: Ca4GdO(BO3)3 laser[J]. Applied Optics, 38, 976-979(1999).

    [18] Ch nais S, Druon F, Balembois F et al. Multiwatt, tunable, diode-pumped CW Yb: GdCOB laser[J]. Applied Physics B, 72, 389-393(2001).

    [19] Auge F, Druon F, Balembois F et al. Theoretical and experimental investigations of a diode-pumped quasi-three-level laser: the Yb 3+-doped Ca4GdO(BO3)3 (Yb: GdCOB) laser[J]. IEEE Journal of Quantum Electronics, 36, 598-606(2000).

    [20] Liu J H, Zhang H J, Wang J Y et al. Output-coupling-dependent polarization state of a continuous-wave Yb∶YCa4O(BO3)3 laser[J]. Optics Letters, 32, 2909-2911(2007).

    [21] Liu J, Han W, Zhang H et al. Comparison of laser performance of Yb∶YCa4O(BO3)3 crystals cut along the principal optical axes[J]. Applied Physics B, 91, 329-332(2008).

    [22] Liu J H, Yang H W, Zhang H J et al. Anisotropy in laser performance of Yb: GdCa4O(BO3)3 crystal[J]. Applied Optics, 47, 5436-5441(2008).

    [23] Heckl O H. Kr nkel C, Baer C R E, et al. Continuous-wave and modelocked Yb∶YCOB thin disk laser: first demonstration and future prospects[J]. Optics Express, 18, 19201-19208(2010).

    [24] Yoshida A, Schmidt A, Zhang H J et al. 42 fs diode-pumped Yb: Ca4YO(BO3)3 oscillator[J]. Optics Express, 18, 24325-24330(2010).

    [25] Yoshida A, Schmidt A, Petrov V et al. Diode-pumped mode-locked Yb∶YCOB laser generating 35 fs pulses[J]. Optics Letters, 36, 4425-4427(2011).

    [26] Liu J H, Dai Q B, Wan Y et al. The potential of Yb∶YCa4O(BO3)3 crystal in generating high-energy laser pulses[J]. Optics Express, 21, 9365-9376(2013).

    [27] Liu J H, Wan Y, Dai Q B et al. Efficient high-energy passively Q-switched Yb: GdCa4O(BO3)3 laser[J]. Applied Optics, 52, 2676-2681(2013).

    [28] Liu J H, Han W J, Chen X W et al. Continuous-wave and passive Q-switching laser performance of Yb:YCa4O(BO3)3 crystal[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 348-355(2015).

    [29] Chen X W, Wang L S, Liu J H et al. High-power CW and passively Q-switched laser operation of Yb∶GdCa4O(BO3)3 crystal[J]. Optics & Laser Technology, 79, 74-78(2016).

    [30] Chen X W, Han W J, Xu H H et al. High-power passively Q-switched Yb∶YCa4O(BO3)3 laser with a GaAs crystal plate as saturable absorber[J]. Applied Optics, 54, 3225-3230(2015).

    [31] Chen X W, Wang L S, Han W J et al. High-energy passively Q-switched operation of Yb: GdCa4O(BO3)3 laser with a GaAs semiconductor saturable absorber[J]. Optics Express, 23, 30357-30363(2015).

    [32] Liu J H, Chen X W, Han W J et al. Passively Q-switched Yb∶YCa4O(BO3)3/GaAs laser generating 1 mJ of pulse energy[J]. IEEE Photonics Technology Letters, 28, 1104-1106(2016).

    [33] Chen X W. Yb∶ReCOB crystal characteristics of the high power /high energy pulse laser[D]. Qingdao: Qingdao University, 39-57(2016).

    [34] Yang J N, Ma Y J, Tian K et al. High-power passive Q-switching performance of a Yb∶YCa4O(BO3)3 laser with a few-layer Bi2Te3 topological insulator as a saturable absorber[J]. Optical Materials Express, 8, 3146-3154(2018).

    [35] Ma Y J, Tian K, Dou X D et al. Passive Q-switching induced by few-layer MoTe2 in an Yb∶YCOB microchip laser[J]. Optics Express, 26, 25147-25155(2018).

    [36] Li Y H, Liu M J, Chen J X et al. Passively Q-switched laser action of Yb: LaCa4O(BO3)3 crystal at 1.07-1.08 μm induced by 2D Bi2Te3 topological insulator[J]. Applied Physics B, 125, 131(2019).

    [37] Tian K, Yang J N, Yi H Y et al. High-power Yb∶YCa4O(BO3)3 laser passively Q-switched by a few-layer WS2 saturable absorber[J]. Optics & Laser Technology, 113, 1-5(2019).

    [38] Chen X W, Xu H H, Guo Y F et al. Acousto-optic Q-switching laser performance of Yb: GdCa4O(BO3)3 crystal[J]. Applied Optics, 54, 7142-7147(2015).

    [39] Chen X W, Xu H H, Han W J et al. Compact repetitively Q-switched Yb∶YCa4O(BO3)3 laser with an acousto-optic modulator[J]. Optics & Laser Technology, 70, 128-130(2015).

    [40] Khaled F, Loiseau P, Aka G et al. Rise in power of Yb∶YCOB for green light generation by self-frequency doubling[J]. Optics Letters, 41, 3607-3610(2016).

    [41] Fang Q N, Lu D Z, Yu H H et al. Self-frequency-doubled vibronic yellow Yb∶YCOB laser at the wavelength of 570 nm[J]. Optics Letters, 41, 1002-1005(2016).

    [42] Lu D Z, Fang Q N, Yu X S et al. Power scaling of the self-frequency-doubled quasi-two-level Yb∶YCOB laser with a 30% slope efficiency[J]. Optics Letters, 44, 5157-5160(2019).

    [43] Hellström J E, Pasiskevicius V, Laurell F et al. Laser performance of Yb: GdCa4O(BO3)3 compared to Yb: KGd(WO4)2 under diode-bar pumping[J]. Laser Physics, 17, 1204-1208(2007).

    [44] Liu J H, Mateos X, Zhang H J et al. Characteristics of a continuous-wave Yb: GdVO4 laser end pumped by a high-power diode[J]. Optics Letters, 31, 2580-2582(2006).

    [45] Liu J H, Wan Y, Tian X P et al. Polarization state of a continuous-wave Yb:NaY(WO4)2 disordered crystal laser[J]. Laser Physics Letters, 10, 075003(2013).

    [46] Yuan H L, Wang L S, Ma Y J et al. Anisotropy in spectroscopic and laser properties of Yb: Sr3La2(BO3)4 disordered crystal[J]. Optical Materials Express, 7, 3251-3260(2017).

    [47] Ji Y X, Cao J F, Tu C Y. Polarized spectral properties of a notable Yb 3+: LaCa4O(BO3)3 crystal[J]. Optical Materials, 35, 2698-2702(2013).

    [48] Ji Y X, Cao J F, Xu J L et al. Output-coupling-dependent laser operation of monoclinic Yb: Ca4LaO(BO3)3 crystal[J]. Applied Optics, 52, 5079-5082(2013).

    [49] Ji Y X, Cao J F, Xu J L et al. 24 W highly efficient simultaneous dual-wavelength laser operation of monoclinic Yb 3+: Ca4LaO(BO3)3 crystals[J]. Applied Optics, 53, 5517-5521(2014).

    [50] Zhang Y, Wei B, Wang G F. Spectroscopic properties of Yb 3+-doped Ca4Gd0.5Y0.5O(BO3)3 single crystals[J]. Physica Status Solidi (a), 207, 1468-1473(2010).

    [51] Chen X W, Xu H H, Han W J et al. Spectroscopic properties and high-power laser operation of Yb0.14∶Y0.77Gd0.09Ca4O(BO3)3 mixed crystal[J]. Optical Materials, 55, 33-37(2016).

    [52] Zhong D G, Teng B, Kong W J et al. Growth, structure, spectroscopic and continuous-wave laser properties of a new Yb: GdYCOB crystal[J]. Journal of Alloys and Compounds, 692, 413-419(2017).

    [53] Ma Y J, Tian K, Li Y H et al. Anisotropic lasing properties in the 1059-1086 nm range of Yb∶YCa4O(BO3)3 crystal[J]. Optical Materials Express, 8, 727-735(2018).

    [54] Ma Y J, Li Y H, Dou X D et al. Free-running performance of Yb0.14:Y0.77Gd0.09Ca4O(BO3)3 mixed crystal laser operating around 1084 nm[J]. Optics Communications, 427, 244-249(2018).

    [55] Li Y H, Liu M J, Han W J et al. High-power dual-polarization laser operation of Yb: LaCa4O(BO3)3 crystal[J]. Optics Communications, 451, 192-196(2019).

    [56] Chen L J, Wang Z P, Yu H H et al. High-power single- and dual-wavelength Nd: GdVO4 lasers with potential application for the treatment of telangiectasia[J]. Applied Physics Express, 5, 112701(2012).

    [57] Loiko P, Serres J M, Mateos X et al. Thermal lensing and multiwatt microchip laser operation of Yb∶YCOB crystals[J]. IEEE Photonics Journal, 8, 1-12(2016).

    [58] Xia J, Liu H L, Hu Z H et al. Pure-three-level Yb: GdCOB CW laser at 976 nm[J]. Optics Letters, 43, 3981-3984(2018).

    [59] Koechner W. Solid-state laser engineering[M]. 6th ed. Berlin:Springer, 488-533(2006).

    [60] Liang H C, Huang J Y, Su K W et al. Passively Q-switched Yb 3+:YCa4O(BO3)3 laser with InGaAs quantum wells as saturable absorbers[J]. Applied Optics, 46, 2292-2296(2007).

    [61] Dou X D. Laser properties of Yb ions in tetragonal LuPO4 and LuVO4 crystals[D]. Qingdao: Qingdao University, 37-54(2019).

    [62] Dou X D, Wang L S, Ma Y J et al. Generation of pulsed laser radiation at 1002 nm with a quantum defect of 2.6%[J]. IEEE Photonics Journal, 9, 1-8(2017).

    [63] Dou X D, Wang L S, Han W J et al. Near-IR 1 μm high-repetition-rate pulsed radiation generated with an Yb∶LuPO4miniature crystal rod laser[J]. Optics Communications, 420, 90-94(2018).

    [64] Han W J, Ma Y J, Dou X D et al. Passive Q-switching laser properties of Yb: Re3Ga5O12 (Re=Y, Lu, Gd) garnets with GaAs semiconductor saturable absorber[J]. Optics Communications, 423, 1-5(2018).

    [65] Dou X D, Ma Y J, Zhu M et al. Multi-watt sub-30 ns passively Q-switched Yb∶LuPO4/WS2 miniature laser operating under high output couplings[J]. Optics Letters, 43, 3666-3669(2018).

    [66] Yang J N, Tian K, Li Y H et al. Few-layer Bi2Te3: an effective 2D saturable absorber for passive Q-switching of compact solid-state lasers in the 1 μm region[J]. Optics Express, 26, 21379-21389(2018).

    [67] Tian K, Li Y H, Yang J N et al. Passive Q-switching of an Yb: KLu(WO4)2 laser with 2D saturable absorbers of MoS2 and WS2: Scaling the output power to 2-W level[J]. Optics Communications, 436, 42-46(2019).

    [68] Li Y H, Xu Y F, Xu G Y et al. Performance of an Yb: LaCa4O(BO3)3 crystal laser at 1.03-1.04 μm passively Q-switched with 2D MoTe2 saturable absorber[J]. Infrared Physics & Technology, 99, 167-171(2019).

    [69] Tian K, Li Y H, Yang J N et al. Passively Q-switched Yb∶KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber[J]. Applied Physics B, 125, 24(2019).

    [70] Yang J N, Li Y H, Tian K et al. Passive Q-switching of an Yb∶GdCa4O(BO3)3 laser induced by a few-layer Bi2Te3 topological insulator saturable absorber[J]. Laser Physics Letters, 15, 125802(2018).

    [71] Gao Z Y, Zhu J F, Tian W L et al. Generation of 73 fs pulses from a diode pumped Kerr-lens mode-locked Yb∶YCa4O(BO3)3 laser[J]. Optics Letters, 39, 5870-5872(2014).

    [72] Gao Z Y, Zhu J F, Wu Z M et al. Tunable second harmonic generation from a Kerr-lens mode-locked Yb∶YCa4O(BO3)3femtosecond laser[J]. Chinese Physics B, 26, 044202(2017).

    [73] Lin H F, Zhang G, Zhang L Z et al. SESAM mode-locked Yb: GdYCOB femtosecond laser[J]. Optical Materials Express, 7, 3791-3795(2017).

    [74] Liu J H, Wang C Q, Zhang S J et al. Investigation on intracavity second-harmonic generation at 1.06 μm in YCa4O(BO3)3 by using an end-pumped Nd∶YVO4 laser[J]. Optics Communications, 182, 187-191(2000).

    [75] Liu J, Xu X, Wang C Q et al. Intracavity second-harmonic generation of 1.06 μm in GdCa4O(BO3)3 crystals[J]. Applied Physics B, 72, 163-166(2001).

    [76] Fang Q N, Lu D Z, Yu H H et al. Anisotropic thermal properties of Yb∶YCOB crystal influenced by doping concentrations[J]. Optical Materials Express, 9, 1501-1512(2019).

    Fenfen Liu, Shuxuan Cao, Junhai Liu. Research of Yb-Doped Rare-Earth Calcium Oxyborate Crystal Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071604
    Download Citation