• Laser & Optoelectronics Progress
  • Vol. 58, Issue 7, 0700002 (2021)
Peipei Wu1, Yongqi Fu1、*, and Jun Yang2
Author Affiliations
  • 1School of Physics, University of Electronic Science and Technology, Chengdu , Sichuan 610054, China
  • 2Nano Manufacturing and System Integration Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400700, China
  • show less
    DOI: 10.3788/LOP202158.0700002 Cite this Article Set citation alerts
    Peipei Wu, Yongqi Fu, Jun Yang. Graphene Photodetectors Based on Surface Plasmons[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700002 Copy Citation Text show less
    References

    [1] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 9, 611-622(2010).

    [2] Dou L, Yang Y M, You J et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 5, 5404(2014).

    [3] Koppens F H L, Mueller T, Avouris P et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 215, 780-793(2014).

    [4] Liu C H, Chang Y C, Norris T B et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 4, 273-278(2014).

    [5] Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 4, 297-301(2010).

    [6] Roy K, Padmanabhan M, Goswami S et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology, 11, 826-830(2013).

    [7] Wei R X, Wang Y W, Jiang L W et al. Detection of chemical vapor deposition-prepared graphene by surface plasmon polariton imaging[J]. Acta Optica Sinica, 39, 1124002(2019).

    [8] Sun Z H, Liu Z K, Li J H et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Advanced Materials, 43, 5878-5883(2012).

    [9] Hong X P, Kim J, Shi S F et al. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures[J]. Nature Nanotechnology, 9, 682-686(2014).

    [10] Kang Y M, Liu H D, Morse M et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics, 3, 59-63(2009).

    [11] Lee Y, Kwon J, Hwang E et al. High-performance perovskite-graphene hybrid photodetector[J]. Advanced Material, 27, 41-46(2015).

    [12] Lopez-Sanchez O, Lembke D, Kayci M et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 8, 497-501(2013).

    [13] Youngblood N, Chen C, Koester S J et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nature Photonics, 9, 247-252(2015).

    [14] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 10, 216-226(2016).

    [15] Johannsen J C, Ulstrup S, Cilento F et al. Direct view of hot carrier dynamics in graphene[J]. Physical Review Letters, 111, 027403(2013).

    [16] Li Y X, Li Z P, Ye W X et al. Gold nanorods and graphene oxide enhanced BSA-AgInS2 quantum dot-based photoelectrochemical sensors for detection of dopamine[J]. Electrochimica Acta, 295, 1006-1016(2019).

    [17] Cheng J B, Wang C L, Zou X M et al. Recent advances in optoelectronic devices based on 2D materials and their heterostructures[J]. Advanced Optical Materials, 7, 1800441(2019).

    [18] Guo J S, Li J, Liu C Y et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm[J]. Light: Science & Applications, 9, 1-11(2020).

    [19] Zhang M S, Jiang M L, Feng Z W et al. Fundamentals and applications of ultrafast laser induced photothermal reshaping of plasmonic nanomaterials[J]. Laser & Optoelectronics Progress, 57, 111401(2020).

    [20] Vaziri S, Lupina G, Henkel C et al. A graphene-based hot electron transistor[J]. Nano Letters, 13, 1435-1439(2013).

    [21] Island J O, Blanter S I, Buscema M et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Letters, 15, 7853-7858(2015).

    [22] Sahin H, Tongay S, Horzum S et al. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2[J]. Physical Review B, 87, 165409(2013).

    [23] Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures[J]. MRS Bulletin, 30, 338-348(2005).

    [24] Sun D, Aivazian G, Jones A M et al. Ultrafast hot-carrier-dominated photocurrent in graphene[J]. Nature Nanotechnology, 7, 114-118(2012).

    [25] Tian P, Tang L B, Teng K S et al. Recent advances in graphene homogeneous p-n junction for optoelectronics[J]. Advanced Materials Technologies, 7, 1900007(2019).

    [26] Xie C, Wang Y, Zhang Z X et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 19, 41-83(2018).

    [27] Xu H, Han X, Dai X et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors[J]. Advanced Materials, 30, e1706561(2018).

    [28] Guo Q S, Pospischil A, Bhuiyan M et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Letters, 16, 4648-4655(2016).

    [29] Wang P W, Tang C J, Yan Z D et al. Graphene-based superlens for subwavelength optical imaging by graphene plasmon resonances[J]. Plasmonics, 11, 515-522(2016).

    [30] Yuan H T, Liu X G, Afshinmanesh F et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 10, 707-713(2015).

    [31] Zhang B Y, Liu T, Meng B et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 4, 1811(2013).

    [32] Huang J A, Luo L B. Low-dimensional plasmonic photodetectors: recent progress and future opportunities[J]. Advanced Optical Materials, 8, 1701282(2018).

    [33] Li W, Valentine J G. Harvesting the loss: surface plasmon-based hot electron photodetection[J]. Nanophotonics, 6, 177-191(2017).

    [34] Politano A, Chiarello G. Plasmon modes in graphene: status and prospect[J]. Nanoscale, 19, 10927-10940(2014).

    [35] Li X M, Rui M C, Song J Z et al. Carbon and graphene quantum dots for optoelectronic and energy devices: a review[J]. Advanced Functional Materials, 31, 4929-4947(2015).

    [36] Guo J X, Liu Y, Lin Y et al. Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications[J]. Nanoscale, 43, 20868-20875(2019).

    [37] Maleki A, Coutts D W, Downes J E et al. Graphene photo-detector enhanced by plasmonic coupling[C], 1-4(2017).

    [38] Hu H, Yang X X, Guo X D et al. Gas identification with graphene plasmons[J]. Nature Communications, 10, 1131(2019).

    [39] Salamin Y, Ma P, Baeuerle B et al. 100 GHz ultra-compact plasmonic photodetector[J]. ACS Photonics, 8, 3291-9297(2018).

    [40] Kim J T, Chung K H, Yu Y J et al. Graphene plasmonic photodetector for planar-type photonic integrated circuits[C], SM3H: SM3H.8(2014).

    [41] Yang X X, Kong X T, Dai Q. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica, 64, 106801(2015).

    [42] Safaei A, Chandra S, Shabbir M W et al. Dirac plasmon-assisted asymmetric hot carrier generation for room-temperature infrared detection[J]. Nature Communications, 10, 3498(2019).

    [43] Hu H, Yang X, Zhai F et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nature Communications, 7, 12334(2016).

    [44] Lee I H, Yoo D, Avouris P et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy[J]. Nature Nanotechnology, 14, 313-319(2019).

    [45] Liu Y, Cheng R, Liao L et al. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature Communications, 2, 579(2011).

    [46] Luo L B, Zeng L H, Xie C et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector[J]. Scientific Reports, 4, 3914(2014).

    [47] Du B W, Lin L, Liu W et al. Plasmonic hot electron tunneling photodetection in vertical Au-graphene hybrid nanostructures[J]. Laser & Photonics Reviews, 11, 1600148(2017).

    [48] Ni Z Y, Ma L L, Du S C et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 11, 9854-9862(2017).

    [49] Radko I P, Bozhevolnyi S I, Grigorenko A N. Maximum modulation of plasmon-guided modes by graphene gating[J]. Optics Express, 24, 8266-8279(2016).

    [50] Salmanogli A, Gokcen D, Gecim H S. Plasmonic effect on quantum-dot photodetector responsivity[J]. IEEE Sensors Journal, 19, 3660-3667(2019).

    [51] Castilla S, Terrés B, Autore M et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction[J]. Nano Letters, 19, 2765-2773(2019).

    [52] Aouani H, Rahmani M, Pov H et al. Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies[J]. The Journal of Physical Chemistry C, 117, 18620(2013).

    [53] Xia F N, Mueller T, Lin Y M et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 12, 839-843(2009).

    [54] Zhi T, Tao T, Liu B et al. Surface plasmon semiconductor nanolaser[J]. Chinese Journal of Lasers, 47, 0701010(2020).

    [55] Azar N S, Shrestha V R, Crozier K B. Plasmonic enhancement of graphene long-wave infrared photodetectors via bull's eye concentrator, optical cavity and nanoantennas[C], 1(2019).

    [56] Echtermeyer T J, Milana S, Sassi U et al. Surface plasmon polariton graphene photodetectors[J]. Nano Letters, 16, 8-20(2016).

    [57] Sobhani A, Knight M W, Wang Y M et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot elevtron device[J]. Nature Communications, 4, 1643(2013).

    [58] Xu Y, Bian J, Zhang W H. Principles and processes of nanometric localized-surface-plasmonic optical sensors[J]. Laser & Optoelectronics Progress, 56, 202407(2019).

    Peipei Wu, Yongqi Fu, Jun Yang. Graphene Photodetectors Based on Surface Plasmons[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700002
    Download Citation