• Infrared and Laser Engineering
  • Vol. 46, Issue 7, 720002 (2017)
Zhang Qian1、2, Zhang Peiqing1、2, Zeng Jianghui1、2, Dai Shixun1、2, and Wang Xunsi1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201746.0720002 Cite this Article
    Zhang Qian, Zhang Peiqing, Zeng Jianghui, Dai Shixun, Wang Xunsi. Mid-infrared fiber grating optical switch of Ge20As20Se15Te45 chalcogenide glass[J]. Infrared and Laser Engineering, 2017, 46(7): 720002 Copy Citation Text show less
    References

    [1] Tao Zisheng, Huang Yonglin. Optical switches based on FEG with anisotropic cladding [J]. Study on Optical Communications, 2016, 42(1): 35-37. (in Chinese)

    [2] Larochelle S, Hibino Y, Mizrahi V, et al. All-optical switching of grating transmission using cross-phase modulation in optical fibres[J]. Electronics Letters, 1990, 26(18): 1459-1460.

    [3] Eggleton B J, Slusher R E, Judkins J B, et al. All-optical switching in long-period fiber gratings [J]. Optics Letters, 1997, 22(12): 883-835.

    [4] Melloni A, Chinello M, Martinelli M, et al. All-optical switching in phase-shifted fiber gratings [J]. Filtration Industry Analyst, 2000, 12(1): 42-44.

    [5] Sun Lihong, Wang Xunsi, Zhu Qingde, et al. Advance on the exploration and evaluation of high nonlinear chalcogenide glasses [J]. Laser & Optoelectronics Progress, 2016, 53(2): 7-15. (in Chinese)

    [6] Bai Yu, Liao Zhiyuan, Li Hua, et al. Application of the chalcogenide glass in modern infrared thermal imaging systems[J]. Chinese Optics, 2014, 7(3): 449-455. (in Chinese)

    [7] Xu Yantao, Guo Haitao, Lu Min, et al. Preparation and properties of low-loss core-cladding structural Ge-Sb-Se chalcogenide glass fibers[J]. Infrared and Laser Engineering, 2015, 44(1): 182-187. (in Chinese)

    [8] Fu Qiang, Zhang Xin. Athermalization of the medium-wave infrared optical system based on chalcogenide glasses[J]. Infrared and Laser Engineering, 2015, 44(5): 1467-1471. (in Chinese)

    [9] Dong Fanlong, Zhao Fangzhou, Ge Tingwu, et al. Optimization of beam quality for all-fiber lasers[J]. Optics and Precision Engineering, 2014, 22(4): 844-849.(in Chinese)

    [10] Liu Youqiang, Cao Yinhua, Li Jing, et al. 5 kW fiber coupling diode laser for laser processing [J]. Optics and Precision Engineering, 2015, 23(5): 1279-1287. (in Chinese)

    [11] Tanaka K, Toyosawa N, Hisakuni H. Photoinduced Bragg gratings in As2S3 optical fibers[J]. Optics Letters, 1995, 20(19): 1976-1978.

    [13] Ahmad R, Rochette M, Baker C. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires [J]. Optics Letters, 2011, 36(15): 2886-2888.

    [14] Senderáková D. Analysis of spectral response of optical switching devices based on chalcogenide bistable fiber Bragg gratings[C]//SPIE, 2015, 9450: 94501K.

    [15] Yang Guangqiang, Guo Yong, Song Ji′en, et al. Nonlinear switching characteristics of fiber Bragg gratings[J]. Semiconductor Optoelectronics, 2004, 25(2): 94-97.(in Chinese)

    Zhang Qian, Zhang Peiqing, Zeng Jianghui, Dai Shixun, Wang Xunsi. Mid-infrared fiber grating optical switch of Ge20As20Se15Te45 chalcogenide glass[J]. Infrared and Laser Engineering, 2017, 46(7): 720002
    Download Citation