• Matter and Radiation at Extremes
  • Vol. 8, Issue 2, 026901 (2023)
Cheng-Jian Xiao*, Guang-Wei Meng, and Ying-Kui Zhao
Author Affiliations
  • Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • show less
    DOI: 10.1063/5.0119240 Cite this Article
    Cheng-Jian Xiao, Guang-Wei Meng, Ying-Kui Zhao. Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve[J]. Matter and Radiation at Extremes, 2023, 8(2): 026901 Copy Citation Text show less
    References

    [1] R. E.Marshak. Effect of radiation on shock wave behavior. Phys. Fluids, 1, 24(1958).

    [2] Y. P.Raizer, Y. B.Zeldovich. Physics of Shock Waves and High Temperature Hydrodynamics Phenomena(1984).

    [3] M. D.Rosen. The science applications of the high-energy density plasmas created on the Nova laser. Phys. Plasmas, 3, 1803(1996).

    [4] D.Arnett, H.Drake, R.Paul, B. A.Remington, H.Takabe. Modeling astrophysical phenomena in the laboratory with intense lasers. Science, 284, 1488(1999).

    [5] P.Amendt, R. L.Berger, S. G.Glendinning, S. H.Glenzer, S. W.Haan, R. L.Kauffman, O. L.Landen, J. D.Lindl, L. J.Suter. The physics basis for ignition using indirect-drive targets on the national ignition facility. Phys. Plasmas, 11, 339(2004).

    [6] B.Albertazzi, P.Mabey, T.Michelet?al.. Laboratory observation of radiative shock deceleration and application to SN 1987A. Astrophys. J., 888, 25(2020).

    [7] T. M.Guymer, A. S.Moore, J.Mortonet?al.. Characterization of supersonic radiation diffusion waves. J. Quant. Spectrosc. Radiat. Transfer, 159, 19(2015).

    [8] M.Koenig, T.Michel, R.Yurchaket?al.. Interaction of a highly radiative shock with a solid obstacle. Phys. Plasmas, 24, 082707(2017).

    [9] N.Charpentier, A.Ciardi, é.Falize, V.Tranchant, L.Van Box Som. New class of laboratory astrophysics experiments: Application to radiative accretion processes around neutron stars. Astrophys. J., 936, 14(2022).

    [10] R.Pakula, R.Sigel. Self-similar expansion of dense matter due to heat transfer by nonlinear conduction. Phys. Fluids, 28, 232(1985).

    [11] J. H.Hammer, M. D.Rosen. A consistent approach to solving the radiation diffusion equation. Phys. Plasmas, 10, 1829(2003).

    [12] N.Kaiser, J.Meyer-ter-Vehn, R.Sigel. The X-ray-driven heating wave. Phys. Fluids B, 1, 1747(1989).

    [13] J. H.Hammer, M. D.Rosen. Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss. Phys. Rev. E, 72, 056403(2005).

    [14] J. H.Hammer, O. A.Hurricane. Bent Marshak waves. Phys. Plasmas, 13, 113303(2006).

    [15] C.Cherfils-Cléerouin, J.Garnier, G.Malinié, Y.Saillard. Self-similar solutions for a nonlinear radiation diffusion equation. Phys. Plasmas, 13, 092703(2006).

    [16] P.Arnault, Y.Saillard, V.Silvert. Principles of the radiative ablation modeling. Phys. Plasmas, 17, 123302(2010).

    [17] S. I.Heizler, T.Shussman. Full self-similar solutions of the subsonic radiative heat equations. Phys. Plasmas, 22, 082109(2015).

    [18] J.Li, G.Meng, M.Wang, J.Yang, W.Zhang, T.Zhu, S.Zou. A simple method to verify the opacity and equation of state of high-Z plasmas. Phys. Plasmas, 20, 092704(2013).

    [19] J.Li, G.Meng, J.Wang, X.Wang, W.Zhang. Generation of a sharp density increase in radiation transport between high-Z and low-Z plasmas. Matter Radiat. Extremes, 1, 249(2016).

    [20] G.Meng, M.Wang, S.Zou. The theoretical investigation of radiation transport in a slot. Phys. Plasmas, 26, 022708(2019).

    [21] Z.Liu, G.Meng, Y.Zhao. A theoretical criterion for the closure of slots filled with low-Z foam. Phys. Plasmas, 27, 033303(2020).

    [22] G.Meng, J.She, T.Song, M.Wang, J.Yang. Theoretical investigations on x-ray transport in radiation transport experiments on the Shenguang-III prototype laser facility. Matter Radiat. Extremes, 7, 025901(2022).

    [23] T.Feng. A numerical method for solving radiation transport equation on Lagrangian mesh. Chin. J. Comput. Phys., 21, 427(2004).

    [24] W. L.Kruer, G. B.Zimmerman. Numerical simulation of laser-initiated fusion. Comments Plasma Phys. Controlled Fusion, 2, 51(1975).

    [25] T. R.Dittrich, N. A.Gentile, S. W.Haan, O.Jones, G. D.Kerbel, M. M.Marinak, D.Munro, S.Pollaine. Three-dimensional HYDRA simulations of national ignition facility targets. Phys. Plasmas, 8, 2275(2001).

    [26] J.Meyer-ter-Vehn, R.Ramis, J.Ramrez. MULTI2D-a computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Comm., 180, 977(2009).

    [27] K.Eidmann, S.Hüller, J.Meyer-ter-Vehn, R.Ramis. MULTI-fs-A computer code for laser-plasma interaction in the femtosecond regime. Comput. Phys. Comm., 183, 637(2012).

    [28] L.Dongxian, L.Jinghong, S.Kexu, J.Shaoen, Z.Wenhai, H.Xin, X.Yan, H.Yixiang, D.Yongkun, Z.Zhijian. Supersonic propagation of heat waves in low density heavy material. Plasma Sci. Technology, 7, 2965(2005).

    [29] T.Chang, Y.Ding, T.Feng, S.Jiang, D.Lai, K.Lan, S.Li, W.Pei, Y.Xu. Two-photon group radiation transfer study in low-density foam cylinder. Laser Part. Beams, 24, 495(2006).

    [30] Y.Guo-Hong, Y.Jia-Min, Z.Ji-Yan, J.Shao-En, H.Xin, D.Yao-Nan, H.Yi-Xiang, L.Yong-Sheng. Experimental observation of ionization and shock fronts in foam targets driven by thermal radiation. Chin. Phys. B, 19, 025201(2010).

    [31] Y.Ding, Y.Ding, X.He, Z.Hu, J.Li, S.Liu, G.Meng, Y.Xu, J.Yang, R.Yi, J.Zhang, T.Zhu. Experimental study of the hydrodynamic trajectory of an x-ray-heated gold plasmas. Phys. Plasmas, 17, 062702(2010).

    [32] Z.Dai, F.Ge, T.Huang, W.Jiang, C.Li, X.Li, C.Wu, P.Yang, W.Zheng, S.Zou. Investigations on the hohlraum radiation in the first shaped laser pulse implosion experiment at the SGIII laser facility. Phys. Plasmas, 26, 022705(2019).

    [33] J.Edwards, D.Hoarty, A.Iwase, C.Meyer, O.Willi. Characterization of laser driven shocks in low density foam targets. Phys. Rev. Lett., 78, 3322(1997).

    [34] C. A.Back, J. D.Bauer, J. H.Hammer, W. W.Hsing, O. L.Landen, B. F.Lasinski, P. W.Rambo, M. D.Rosen, L. J.Suter, R. E.Turner. Diffusive, supersonic x-ray transport in radiatively heated foam cylinders. Phys. Plasmas, 7, 2126(2000).

    [35] C. A.Back, J. D.Bauer, J. H.Hammer, W. H.Hsing, O. L.Landen, B. F.Lasinski, M. D.Rosen, L. J.Suter, R. E.Turner. Detailed measurements of a diffusive supersonic wave in a radiatively heated foam. Phys. Rev. Lett., 84, 274(2000).

    [36] C. A.Back, K.Baker, J.Castor, A. J.Comley, A. B. R.Cooper, J.Foster, G.Glendinning, P.Graham, W. W.Hsing, J.Hund, J.Klingmann, K.Lu, S.MacLaren, R.Marrs, M.May, A. S.Moore, J.Sain, J.Satcher, M. B.Schneider, R.Seugling, K.Widmann, B.Young, P.Young. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility. Phys. Plasmas, 21, 063303(2014).

    [37] S.Allan, N.Bazin, J.Benstead, C.Bentley, A. J.Comley, J.Cowan, K.Flippo, W.Garbett, T. M.Guymer, C.Hamilton, J. L.Kline, N. E.Lanier, A. S.Moore, J.Morton, K.Mussack, K.Obrey, L.Reed, D. W.Schmidt, R. M.Stevenson, J. M.Taccetti, J.Workman. Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility. Phys. Plasmas, 22, 043303(2015).

    [38] A. P.Cohen, S. I.Heizler. Modeling of supersonic radiative Marshak waves using simple models and advanced simulations. J. Comput. Theor. Transp., 47, 378(2018).

    [39] A. P.Cohen, S. I.Heizler, G.Malamud. Key to understanding supersonic radiative Marshak waves using simple models and advanced simulations. Phys. Rev. Res., 2, 023007(2020).

    [40] Y.Jia-Min, S.Tian-Ming. One-dimensional simulation of radiation transport in three-dimensional cylinder. Acta Phys. Sin., 62, 015210(2013).

    [41] L. H.Auer, M. L.Hall, G. L.Olson. Diffusion, P1, and other approximate forms of radiation transport. J. Quant. Spectrosc. Radiat. Transfer, 64, 619(2000).

    [42] M.Guang-Wei, L.Jing-Hong, L.Shuang-Gui, Z.Wei-Yan, P.Wen-Bing. Effect of temperature gradient on the non-equilibrium rate of flux emitted by plane gold wall. Acta Phys. Sin., 60, 025210(2011).

    Cheng-Jian Xiao, Guang-Wei Meng, Ying-Kui Zhao. Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve[J]. Matter and Radiation at Extremes, 2023, 8(2): 026901
    Download Citation