[1] Hua Tang, Yong Shen, Liyuan Long. Analysis and prospect of the development of the laser science and technology in China from the perspective of national science. Chinese Journal of Lasers, 50, 0200001(2023).
[2] Snitzer E, Po H, Hakimi F, et al. Doubleclad, offset ce Nd fiber laser[C]Optical Fiber Senss, 1988.
[3] Pu Zhou, Liangjin Huang, Jinyong Leng, . High-power double-cladding fiber lasers: A 30-year overview. Scientia Sinica Technologica, 50, 123-135(2020).
[4] Y Jeong, J K Sahu, D N Payne, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Optics Express, 12, 6088-6092(2004).
[5] Xiaoyi Dong. Doped fiber lasers and amplifiers. Laser & Infrared, 20, 17-23(1990).
[6] Guoqi Cui, Xiaoyi Dong, Jianzhong Zhang, . Analysis of doped fiber characteristics. Optronics·Lasers, 1, 290-295, 299(1990).
[7] Yihong Chen, Ruihua Cheng, Fuxi Gan. Nd-doped fiber laser characteristics of AR ion laser pumping. Chinese Science Bulletin, 36, 1539-1541(1991).
[8] Jiping Ning, Zhihong He, Hongwei Liu, . Study of erbium-doped fiber amplifiers. Acta Optica Sinica, 12, 678-683(1992).
[9] Yihong Chen, Ruihua Cheng, Hongwei Shen, . Doped Nd quartz single-mode fiber 1.088 μm continuous fiber laser. Chinese Journal of Lasers, 19, 664-789(1990).
[10] Dajia Qin. Double-clad fibers increase the linear output power of fiber lasers. Optical Fiber & Electric Cable and Their Applications, 36(1996).
[11] Zheng Cong. The bright future of fiber laser systems. Laser & Optoelectronics Progress, 35, 6-9(1998).
[12] Hai Ming, Bao Yang, Xiaopeng Dong, . Study on pump wavelength and spectral characteristics of Nd3+ double-clad fiber. Chinese Science Bulletin, 365-368(1997).
[13] Hongbing Yin, Shiyu Li, Shuling Cheng, . Preparation of Yb3+ doped quartz fiber and its laser performance. Study on Optical Communications, 23-26(1999).
[14] Kecheng Lv, Weiwei Liu, Fuyun Lv, . Cladding pumping fiber laser. Bulletin of National Science Foundation of China, 13, 288-292(1999).
[15] Bai Chen, Lanrong Chen, Zunqi Lin, . LD pumped Yb3+-doped double-cladding fiber laser. Chinese Journal of Lasers, 27, 101-104(2000).
[16] Ding Ning, Chengpeng Fu, Lei Ding, . Experimental study of Yb3+-doped double-clad fiber laser. Acta Photonica Sinica, 30, 442-445(2001).
[17] Diechi Sun, Yimei Hu, Jianzhong Liang, . Research on Yb doped double clad fiber laser. Study on Communications, 40-42(2000).
[19] Qihong Lou, Jun Zhou, Tiejun Li, . 4.9 W ytterbium-doped double-clad fiber laser. Chinese Journal of Lasers, A29, 306(2002).
[20] Kecheng Lv, Hongxin Su, Yigang Li, . Wattage all-fiber doped Yb double-clad fiber laser. Chinese Journal of Lasers, 29, 604(2002).
[21] Qiang Zhang, Wande Fan, Shenggui Fu, . Study on Yb3+-doped double-clad fiber laser with double-clad fiber Bragg grating as back cavity mirror. Acta Scientiarum Naturalium Universitatis Nankaiensis, 39, 67-69(2006).
[22] Chen Li, Ping Yan, Gang Chen, . The continuous output power of fiber lasers using domestic ytterbium-doped double-clad fibers exceeds 700 W. Chinese Journal of Lasers, 33, 738-738(2006).
[23] Jun Zhou, Qihong Lou, Jianqiang Zhu, . A continuous-wave 714 w fiber laser with China-made large-mode-area double-clad fiber. Acta Optica Sinica, 26, 1119-1120(2006).
[24] Hong Zhao, Shouhuan Zhou, Chen Zhu, . The output power of high-power fiber lasers exceeds 1.2 kW. Laser & Infrared, 36, 930(2006).
[25] Wei Li, Zichun Wu, Xi Chen, . The output power of high-power fiber laser exceeded 1 kW. High Power Laser and Particle Beams, 18, 890(2006).
[26] Pu Zhou, Jinyong Leng, Hu Xiao, . High average power fiber lasers: research progress and future prospect. Chinese Journal of Lasers, 48, 2000001(2021).
[27] S H Xu, Z M Yang, W N Zhang, et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Optics Letters, 36, 3708-3710(2011).
[28] L Zhang, S Cui, C Liu, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier. Optics Express, 21, 5456-5462(2013).
[29] J Liu, H Shi, K Liu, et al. 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA. Optics Express, 22, 13572-13578(2014).
[30] Y Xu, Q Fang, Y Qin, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser. Applied Optics, 54, 9419-9421(2015).
[31] Q Xiao, P Yan, Y Wang, et al. High-power all-fiber superfluorescent source with fused angle-polished side-pumping configuration. Applied Optics, 50, 1164-1169(2011).
[32] J Xu, J Ye, X Hu, et al. In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality. High Power Laser Science and Engineering, 6, 6(2018).
[33] R Song, J Hou, S Chen, et al. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier. Optics Letters, 37, 1529-1531(2012).
[34] Yan F. High Power Raman Fiber Lasers: Recent Progress[C] Frontiers in Optics, 2015: FTh2F.1.
[35] Y Ma, X Wang, J Leng, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique. Optics Letters, 36, 951-953(2011).
[36] Lou Qihong. High Power Fiber Laser Its Applications[M]. Hefei: University of Science Technology of China Press, 2010. (in Chinese)
[40] Jun Zhou, Pu Wang, Pu Zhou. Foreword to the topic "High Power Fiber Laser Technology". Chinese Journal of Lasers, 44, 0201000(2017).
[41] X Chen, T Yao, L Huang, et al. Functional fibers and functional fiber-based components for high-power lasers. Advanced Fiber Materials, 5, 59-106(2022).
[42] Pu Zhou. Fundamentals of high-average-power fiber laser technology: (ii) oscillation cavity. High Power Laser and Particle Beams, 29, 100202(2017).
[43] R Tao, X Wang, P Zhou. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0903319(2018).
[44] M Jiang, Wu, H, Y An, et al. Fiber laser development enabled by machine learning: review and prospect. PhotoniX, 3, 1-27(2022).
[45] Fengyun Li, Yue Li, Qinghua Song, . Nationwide optical fiber material devices achieve a high SRS rejection ratio of 20.88 kW output. Chinese Journal of Lasers, 48, 2116002(2021).
[46] Hu Xiao, Zhiyong Pan, Zilun Chen, . Based on self-developed optical fiber and device, the stable output of 20 kW high beam quality laser is realized. Chinese Journal of Lasers, 49, 1616002(2022).
[47] Yongqing Yi, Jun Liu, Yize Shen, . Homemade 20 kW Yb-doped double-cladding fiber for tandem pumping. Chinese Journal of Lasers, 49, 0706002(2022).
[48] Aoxiang Lin, Qirong Xiao, Li Ni, . Domestic YDF active fiber achieves single-fiber 20 kW laser output. Chinese Journal of Lasers, 48, 0916003(2021).
[49] Lei Zhang, Fengguang Lou, Meng Wang, . Yb-doped triple-clad fiber for nearly10 kW level tandem-pumped output. Chinese Journal of Lasers, 48, 1315001(2021).
[50] J Sun, L Liu, L Han, et al. 100 kW ultra high power fiber laser. Optics Continuum, 1, 1932-1938(2022).
[51] Xiaolin Wang, Pin Lv, Hanwei Zhang, . Fiber Laser simulation software see fiber laser and fiber laser tool collection SFTool. Chinese Journal of Lasers, 44, 0506002(2017).
[52] Pu Zhou, Bing He. Preface to the column "Fiber Laser Beam Synthesis". Infrared and Laser Engineering, 47, 1(2018).
[55] IPG Photonics. IPG Photonics successfully tests wld’s first 10 kilowatt singlemode production laser [EBOL]. (20090615)[20230210]. https:www.ipgphotonics.comCollateralDocumentsEnglishUSPR_FinaI_10kW_SM_laser.pdf
[56] Ehrenreich T, Leveille R, Majid I, et al. 1kW, allglass Tm: fiber laser[C]SPIE Conference on Fiber lasers VII. 2010, 7580: 758016.
[57] P Wan, L M Yang, J Liu. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers. Optics Express, 21, 29854-29859(2013).
[58] Yigit, Ozan, Aydin, et al. Towards power scaling of 2.8 μm fiber lasers.. Optics Letters, 43, 4542-4545(2018).
[59] Agrawal G. Nonlinear Fiber Optics [M]. 6th ed. Cambridge, Massachusetts: Academic Press, 2019.
[60] Agrawal G. Nonlinear Fiber Optics[M]. 5th ed. Translated by Jia Dongfang, Ge Chunfeng. Beijing: Publishing House of Electronics Industry, 2014. (in Chinese)
[61] C Jauregui, C Stihler, J Limpert. Transverse Mode Instability. Advances in Optics and Photonics, 12, 429-484(2020).
[62] S K Turitsyn, A E Bednyakova, M P Fedoruk, et al. Inverse four-wave mixing and self-parametric amplification in optical fibre. Nature Photonics, 9, 608-614(2015).
[63] L G Wright, P Sidorenko, H Pourbeyram, et al. Mechanisms of spatiotemporal mode-locking. Nature Physics, 16, 565-570(2020).
[64] L G Wright, D N Christodoulides, F W Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).
[65] E G Turitsyna, S V Smirnov, S Sugavanam, et al. The laminar-turbulent transition in a fibre laser. Nature Photonics, 7, 783-786(2013).
[66] J Peng, Z Zhao, S Boscolo, et al. Breather molecular complexes in a passively mode-locked fibre laser. Laser & Photonics Reviews, 15, 2000132(2021).
[67] M Liu, Z Wei, H Li, et al. Invisible the "invisible" soliton pulsation in an ultrafast laser. Laser & Photonics Reviews, 14, 1900317(2020).
[68] Y Ding, X Xiao, K Liu, et al. Spatiotemporal mode-locking in lasers with large modal dispersion. Physical Review Letters, 126, 093901(2021).
[69] J Ye, X Ma, Y Zhang, et al. From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber. PhotoniX, 2, 1-15(2021).
[70] W Liu, P Ma, P Zhou. Unified model for spectral and temporal properties of quasi-CW fiber lasers. Journal of the Optical Society of America B: Optical Physics, 38, 3663-3682(2021).
[71] TerMikirtychev V V. Fundamentals of Fiber Lasers Fiber Amplifiers [M]. Heidelberg: Springer International Publishing, 2019.
[72] Bale B G, Okhitnikov O G, Turitsyn S K. Modeling Technologies of Ultrafast Fiber Lasers[M]Fiber Lasers. Berlin: WileyVCH Verlag GmbH & Co. KGaA, 2012: 135175.
[73] Khajavikhan M, Leger J R. Modal They of Coupled Resonats f External Cavity Beam Combining[M]. Berlin: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.
[74] Dong L, Samson B. Fiber Lasers: Basics, Technology, Applications [M]. Boca Raton: CRC Press, 2016.
[75] Binh L, Ngo N. UltraFast Fiber Lasers: Principles Applications with MATLAB Models [M]. Boca Raton: CRC Press, 2011.
[76] D J Richardson, J Nilsson, W A Clarkson. High power fiber lasers: current status and future perspectives [Invited]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[77] M N Zervas, C A Codemard. High power fiber lasers: A review. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).
[78] Glebov A L, Leisher P O, Platonov N, et al. 1.5 kW linear polarized on PM fiber 2 kW on nonPM fiber narrow linewidth CW diffractionlimited fiber amplifier[C]SPIE, 2017, 10085: 100850M.
[79] Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser[C]Advanced Solid State Lasers: Applications II, 2013: ATh4A.2.
[80] Goodno G D. Linewidth narrowing of a high power polarization maintaining fiber amplifier using nonlinear phase demodulation[C]2021 Conference on Lasers ElectroOptics (CLEO), 2021: SM4K.1