• Photonics Research
  • Vol. 12, Issue 4, 625 (2024)
He-Bin Zhang1、2, Gao-Xiang Li2、4、*, and Yong-Chun Liu1、3、5、*
Author Affiliations
  • 1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
  • 2Department of Physics, Huazhong Normal University, Wuhan 430079, China
  • 3Frontier Science Center for Quantum Information, Beijing 100084, China
  • 4e-mail: gaox@mail.ccnu.edu.cn
  • 5e-mail: ycliu@tsinghua.edu.cn
  • show less
    DOI: 10.1364/PRJ.514756 Cite this Article Set citation alerts
    He-Bin Zhang, Gao-Xiang Li, Yong-Chun Liu. Subnatural-linewidth fluorescent single photons[J]. Photonics Research, 2024, 12(4): 625 Copy Citation Text show less
    References

    [1] C. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci., 560, 7-11(2014).

    [2] C. H. Bennett, F. Bessette, G. Brassard. Experimental quantum cryptography. J. Cryptol., 5, 3-28(1992).

    [3] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [4] J. L. O’Brien, A. Furusawa, J. Vučković. Photonic quantum technologies. Nat. Photonics, 3, 687-695(2009).

    [5] H. J. Kimble, M. Dagenais, L. Mandel. Photon antibunching in resonance fluorescence. Phys. Rev. Lett., 39, 691-695(1977).

    [6] P. Grangier, G. Roger, A. Aspect. Observation of photon antibunching in phase-matched multiatom resonance fluorescence. Phys. Rev. Lett., 57, 687-690(1986).

    [7] P. Michler, A. Kiraz, C. Becher. A quantum dot single-photon turnstile device. Science, 290, 2282-2285(2000).

    [8] C. Kurtsiefer, S. Mayer, P. Zarda. Stable solid-state source of single photons. Phys. Rev. Lett., 85, 290-293(2000).

    [9] B. Lounis, W. E. Moerner. Single photons on demand from a single molecule at room temperature. Nature, 407, 491-493(2000).

    [10] L. M. Duan, M. D. Lukin, J. I. Cirac. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).

    [11] W. Yao, R.-B. Liu, L. J. Sham. Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett., 95, 030504(2005).

    [12] H. J. Kimble. The quantum internet. Nature, 453, 1023-1030(2008).

    [13] K. Liao, H. Yan, J. He. Subnatural-linewidth polarization-entangled photon pairs with controllable temporal length. Phys. Rev. Lett., 112, 243602(2014).

    [14] N. Horiuchi. Subnatural-linewidth biphotons. Nat. Photonics, 8, 674(2014).

    [15] C. Shu, P. Chen, T. K. Chow. Subnatural-linewidth biphotons from a doppler-broadened hot atomic vapour cell. Nat. Commun., 7, 12783(2016).

    [16] C. Matthiesen, A. N. Vamivakas, M. Atatüre. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett., 108, 093602(2012).

    [17] H. S. Nguyen, G. Sallen, C. Voisin. Ultra-coherent single photon source. Appl. Phys. Lett., 99, 261904(2011).

    [18] C. Yang, Z. Gu, P. Chen. Tomography of the temporal-spectral state of subnatural-linewidth single photons from atomic ensembles. Phys. Rev. Appl., 10, 054011(2018).

    [19] S. Du, P. Kolchin, C. Belthangady. Subnatural linewidth biphotons with controllable temporal length. Phys. Rev. Lett., 100, 183603(2008).

    [20] S. Du, J. Wen, M. H. Rubin. Narrowband biphoton generation near atomic resonance. J. Opt. Soc. Am. B, 25, C98-C108(2008).

    [21] L. Hanschke, L. Schweickert, J. C. L. Carreño. Origin of antibunching in resonance fluorescence. Phys. Rev. Lett., 125, 170402(2020).

    [22] J. L. Carreño, E. Z. Casalengua, F. P. Laussy. Joint subnatural-linewidth and single-photon emission from resonance fluorescence. Quantum Sci. Technol., 3, 045001(2018).

    [23] C. L. Phillips, A. J. Brash, D. P. S. McCutcheon. Photon statistics of filtered resonance fluorescence. Phys. Rev. Lett., 125, 043603(2020).

    [24] E. del Valle, A. Gonzalez-Tudela, F. P. Laussy. Theory of frequency-filtered and time-resolved n-photon correlations. Phys. Rev. Lett., 109, 183601(2012).

    [25] B. R. Mollow. Power spectrum of light scattered by two-level systems. Phys. Rev., 188, 1969-1975(1969).

    [26] F. Y. Wu, R. E. Grove, S. Ezekiel. Investigation of the spectrum of resonance fluorescence induced by a monochromatic field. Phys. Rev. Lett., 35, 1426-1429(1975).

    [27] W. Nagourney, J. Sandberg, H. Dehmelt. Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett., 56, 2797-2799(1986).

    [28] T. Sauter, W. Neuhauser, R. Blatt. Observation of quantum jumps. Phys. Rev. Lett., 57, 1696-1698(1986).

    [29] J. C. Bergquist, R. G. Hulet, W. M. Itano. Observation of quantum jumps in a single atom. Phys. Rev. Lett., 57, 1699-1702(1986).

    [30] M. B. Plenio, P. L. Knight. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys., 70, 101-144(1998).

    [31] J. Volz, M. Weber, D. Schlenk. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett., 96, 030404(2006).

    [32] J. Hofmann, M. Krug, N. Ortegel. Heralded entanglement between widely separated atoms. Science, 337, 72-75(2012).

    [33] T. van Leent, M. Bock, R. Garthoff. Long-distance distribution of atom-photon entanglement at telecom wavelength. Phys. Rev. Lett., 124, 010510(2020).

    [34] M. V. G. Dutt, J. Cheng, B. Li. Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots. Phys. Rev. Lett., 94, 227403(2005).

    [35] Y. He, Y.-M. He, J. Liu. Dynamically controlled resonance fluorescence spectra from a doubly dressed single InGaAs quantum dot. Phys. Rev. Lett., 114, 097402(2015).

    [36] H. Wang, Y.-M. He, T. H. Chung. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 13, 770-775(2019).

    [37] B. Lounis, M. Orrit. Single-photon sources. Rep. Prog. Phys., 68, 1129-1179(2005).

    [38] M. Lax. Formal theory of quantum fluctuations from a driven state. Phys. Rev., 129, 2342-2348(1963).

    [39] H. Carmichael. An Open Systems Approach to Quantum Optics(1993).

    [40] G. K. Woodgate. Elementary Atomic Structure(2000).

    [41] D. M. Brink, G. R. Satchler. Angular Momentum(1994).

    [42] J. L. Meunier. A simple demonstration of the Wigner-Eckart theorem. Eur. J. Phys., 8, 114-116(1987).

    [43] H.-B. Zhang, G. Yang, G.-M. Huang. Absorption and quantum coherence of a degenerate two-level system in the presence of a transverse magnetic field in different directions. Phys. Rev. A, 99, 033803(2019).

    He-Bin Zhang, Gao-Xiang Li, Yong-Chun Liu. Subnatural-linewidth fluorescent single photons[J]. Photonics Research, 2024, 12(4): 625
    Download Citation