• Infrared and Laser Engineering
  • Vol. 51, Issue 4, 20220004 (2022)
Yuan Ren1、2、3, Hao Wu2、4、*, Chen Wang2、4, Zhengliang Liu2、4, Tong Liu2、4, and Zhenyu Xiong2
Author Affiliations
  • 1Department of Basic, Space Engineering University, Beijing 101400, China
  • 2Department of Aerospace Science and Technology, Space Engineering University, Beijing 101400, China
  • 3Lab of Quantum Detection & Awareness, Space Engineering University, Beijing 101400, China
  • 4State Key Laboratory for Laser Propulsion and its Applications, Space Engineering University, Beijing 101400, China
  • show less
    DOI: 10.3788/IRLA20220004 Cite this Article
    Yuan Ren, Hao Wu, Chen Wang, Zhengliang Liu, Tong Liu, Zhenyu Xiong. Simulation analysis of some key parameters of quantum vortex gyroscope (Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 20220004 Copy Citation Text show less
    Exciton polariton system in microcavity of quantum vortex gyroscope. (a) Flat microcavity structure driven by pump light; (b) System of exciton polariton condensates on the rotational state; (c) Formation process of exciton polariton under light excitation[15]
    Fig. 1. Exciton polariton system in microcavity of quantum vortex gyroscope. (a) Flat microcavity structure driven by pump light; (b) System of exciton polariton condensates on the rotational state; (c) Formation process of exciton polariton under light excitation[15]
    Numerical model construction method
    Fig. 2. Numerical model construction method
    Difference methods in numerical models
    Fig. 3. Difference methods in numerical models
    Influence of different pump light positions on the evolution of quantum vortex gyroscope. (a)-(c) Relative position of the pump light and the ring quantum well, where the ring quantum well is the part surrounded by a white dashed circle, with the inside diameter of 5 μm and the outer diameter of 10 μm; (d)-(f) Evolution law of exciton polariton in quantum gyro system with time in period of 40 不同泵浦光位置对量子涡旋陀螺仪演化的影响。(a)~(c) 泵浦光与环形量子阱的相对位置,其中环形量子阱是被白色虚线圈包围的部分,内径为5 μm,外径为10 μm;(d)~(f) 量子涡旋陀螺仪体系中激子极化激元随时间的演化规律,演化时间为40
    Fig. 4. Influence of different pump light positions on the evolution of quantum vortex gyroscope. (a)-(c) Relative position of the pump light and the ring quantum well, where the ring quantum well is the part surrounded by a white dashed circle, with the inside diameter of 5 μm and the outer diameter of 10 μm; (d)-(f) Evolution law of exciton polariton in quantum gyro system with time in period of 40 不同泵浦光位置对量子涡旋陀螺仪演化的影响。(a)~(c) 泵浦光与环形量子阱的相对位置,其中环形量子阱是被白色虚线圈包围的部分,内径为5 μm,外径为10 μm;(d)~(f) 量子涡旋陀螺仪体系中激子极化激元随时间的演化规律,演化时间为40
    Evolution stability of the superposition state of the vortex only under the action of the pump light and the evolution stability under the combined action of the pump light/signal light. (a) Influence of pump light size and pump light intensity on the evolution characteristics of the system only under the action of pump light; (b) Joint influence of pump light and signal light on superposition state of vortex
    Fig. 5. Evolution stability of the superposition state of the vortex only under the action of the pump light and the evolution stability under the combined action of the pump light/signal light. (a) Influence of pump light size and pump light intensity on the evolution characteristics of the system only under the action of pump light; (b) Joint influence of pump light and signal light on superposition state of vortex
    Evolution characteristics of the superposition state of the exciton polarization exciton of the quantum vortex gyroscope under the different positional relationship between the pump light and the signal light. (a), (e) and (i) Different positional relationship between pump light and signal light (the red area is pump light, and the blue area is signal light); (b)-(d) Vortex superposition state with orbital angular momentum ±1@, and ; (f)-(h) Vortex superposition state with orbital angular momentum ±1@, and ; (j)-(l) Vortex superposition state with orbital angular momentum ±1@, and 泵浦光与信号光不同位置关系下量子涡陀螺仪激子极化激元叠加态演化特征。(a)、(e)和(i) 泵浦光与信号灯的不同位置关系(红色区域为泵浦光,蓝色区域为信号灯);(b)~(d) 轨道角动量±1@, 和的涡叠加态;(f)~(h) 轨道角动量±1@, 和的涡叠加态;(j)~(l)轨道角动量±1@, and 的叠加态涡旋
    Fig. 6. Evolution characteristics of the superposition state of the exciton polarization exciton of the quantum vortex gyroscope under the different positional relationship between the pump light and the signal light. (a), (e) and (i) Different positional relationship between pump light and signal light (the red area is pump light, and the blue area is signal light); (b)-(d) Vortex superposition state with orbital angular momentum ±1@ , and ; (f)-(h) Vortex superposition state with orbital angular momentum ±1@ , and ; (j)-(l) Vortex superposition state with orbital angular momentum ±1@ , and 泵浦光与信号光不同位置关系下量子涡陀螺仪激子极化激元叠加态演化特征。(a)、(e)和(i) 泵浦光与信号灯的不同位置关系(红色区域为泵浦光,蓝色区域为信号灯);(b)~(d) 轨道角动量±1@ , 和 的涡叠加态;(f)~(h) 轨道角动量±1@ , 和 的涡叠加态;(j)~(l)轨道角动量±1@ , and 的叠加态涡旋
    Real-space distribution and evolution characteristic curve of the superposition state of the exciton polarization exciton when the effective mass isat the critical value that makes the system unstable
    Fig. 7. Real-space distribution and evolution characteristic curve of the superposition state of the exciton polarization exciton when the effective mass isat the critical value that makes the system unstable
    Correlation between the effective mass and the evolution process of the superposition state of exciton polarization exciton vortex
    Fig. 8. Correlation between the effective mass and the evolution process of the superposition state of exciton polarization exciton vortex
    Important parametersParameter meaningImportant parametersParameter meaning
    t0Time stepntCalculate the total time
    t_orderTime difference orderIOAMTopological charge number
    NDIMRadial lattice numberNANGLEAngular lattice number
    r1Microcavity inner diameterr2Microcavity outer diameter
    DRRadial lattice lengthDAAngular lattice point length
    MeffEffective massgNonlinear interaction
    γInherent loss of systemηSaturation compensation term
    PwPump light sizePamplitudePump light intensity
    r0Pump optical centerrwLight center
    nrhalfwaveRadial half wavelength numberφ0Initial wave function
    Table 1. Key parameters of the numerical model and the corresponding parameter meaning
    Yuan Ren, Hao Wu, Chen Wang, Zhengliang Liu, Tong Liu, Zhenyu Xiong. Simulation analysis of some key parameters of quantum vortex gyroscope (Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 20220004
    Download Citation