• Laser & Optoelectronics Progress
  • Vol. 58, Issue 4, 0410022 (2021)
Haiwei Mu1、2, Ying Guo1、2, Xinghui Quan1、2、*, Zhimin Cao1、2, and Jian Han1、2
Author Affiliations
  • 1School of Physics and Electrical Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
  • 2Research and Development Center for Testing and Measurement Technology and Instrumentation, Heilongjiang Province Universities, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
  • show less
    DOI: 10.3788/LOP202158.0410022 Cite this Article Set citation alerts
    Haiwei Mu, Ying Guo, Xinghui Quan, Zhimin Cao, Jian Han. Magnetic Resonance Imaging Brain Tumor Image Segmentation Based on Improved U-Net[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0410022 Copy Citation Text show less
    References

    [1] Mayer G S, Vrscay E R. Self-similarity of Fourier domain MRI data[J]. Nonlinear Analysis: Theory, Methods & Applications, 71, e855-e864(2009). http://www.sciencedirect.com/science/article/pii/S0362546X0800816X

    [2] Chu J H, Li X C, Zhang J Q et al. Fine-granted segmentation method for three-dimensional brain tumors using cascaded convolutional network[J]. Laser & Optoelectronics Progress, 56, 101001(2019).

    [3] Mo S W, Deng X P, Wang S et al. Moving object detection algorithm based on improved visual background extractor[J]. Acta Optica Sinica, 36, 0615001(2016).

    [4] Kang J, Ding J M, Wan Y et al. Liver image segmentation algorithm based on watershed correction and U-net[J]. Computer Engineering, 46, 255-261, 270(2020).

    [5] He C E, Xu H J, Wang Z et al. Automatic segmentation algorithm for multimodal magnetic resonance-based brain tumor images[J]. Acta Optica Sinica, 40, 0610001(2020).

    [6] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).

    [7] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018). http://europepmc.org/abstract/MED/28463186

    [8] Zhao H S, Shi J P, Qi X J et al. Pyramid scene parsing network[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 6230-6239(2017).

    [9] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [10] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. ∥Navab N, Hornegger J, Wells W, et al. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science. Cham: Springer, 9351, 234-241(2015).

    [11] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [12] Huang G. Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 2261-2269(2017).

    [13] Duta I C, Liu L, Zhu F et al[2020-06-25]. Improved residual networks for image and video recognition [2020-06-25].https:∥arxiv., org/abs/2004, 04989.

    [14] Ioffe S, Szegedy C[2020-06-27]. Batch normalization: accelerating deep network training by reducing internal covariate shift [2020-06-27].https:∥arxiv., org/abs/1502, 03167.

    [15] Ba J L, Kiros J R, Hinton G E[2020-06-25]. Layer normalization [2020-06-25].http:∥arxiv., org/abs/1607, 06450.

    [16] Ulyanov D, Vedaldi A, Lempitsky V[2020-06-23]. Instance normalization: the missing ingredient for fast stylization [2020-06-23].https:∥arxiv., org/abs/1607, 08022.

    [17] Wu Y X, He K M[2020-06-25]. Group normalization [2020-06-25].http:∥arxiv., org/abs/1803, 08494.

    [18] Luo P, Ren J M, Peng Z L et al[2020-06-27]. Differentiable learning-to-normalize via switchable normalization [2020-06-27].http:∥export.arxiv., org/abs/1806, 10779.

    [19] Singh S, Krishnan S[2020-06-25]. Filter response normalization layer: eliminating batch dependence in the training of deep neural networks [2020-06-25].https:∥arxiv.org/abs/1911.09737v2..

    [20] Milletari F, Navab N, Ahmadi S A. V-, 565-571(2016).

    [21] Sudre C H, Li W Q, Vercauteren T et al[2020-06-25]. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations [2020-06-25].https:∥arxiv., org/abs/1707, 03237.

    [22] Zhou Z W. Siddiquee M M R, Tajbakhsh N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 39, 1856-1867(2020).

    [23] Menze B H, Jakab A, Bauer S et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging, 34, 1993-2024(2015). http://www.ncbi.nlm.nih.gov/pubmed/25494501

    [24] Isensee F, Kickingereder P, Wick W et al. Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge[M]. ∥Crimi A, Bakas S, Kuijf H, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science. Cham: Springer, 10670, 287-297(2017).

    [25] Puch S, Sánchez I, Hernández A et al[2020-06-25]. Global planar convolutions for improved context aggregation in brain tumor segmentation [2020-06-25].https:∥arxiv., org/abs/1908, 10281.

    [26] Wang G T, Li W Q, Ourselin S et al. Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation[M]. ∥Crimi A, Bakas S, Kuijf H, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science. Cham: Springer, 11384, 61-72(2018).

    [27] Pereira S, Pinto A, Alves V et al. Brain tumor segmentation using convolutional neural networks in MRI images[J]. IEEE Transactions on Medical Imaging, 35, 1240-1251(2016).

    [28] Havaei M, Davy A, Warde-Farley D et al. Brain tumor segmentation with deep neural networks[J]. Medical Image Analysis, 35, 18-31(2017).

    [29] Wang G T, Zuluaga M A, Li W Q et al. DeepIGeoS: a deep interactive geodesic framework for medical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 1559-1572(2018).

    Haiwei Mu, Ying Guo, Xinghui Quan, Zhimin Cao, Jian Han. Magnetic Resonance Imaging Brain Tumor Image Segmentation Based on Improved U-Net[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0410022
    Download Citation