• Laser & Optoelectronics Progress
  • Vol. 56, Issue 14, 140001 (2019)
Xiahui Yu1、2, Kaixiang Du1、2, and Peizhi Yang1、2、*
Author Affiliations
  • 1 Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Ministry of Education, Kunming, Yunnan 650500, China
  • 2 Solar Energy Research Institute, Yunnan Normal University, Kunming, Yunnan 650500, China
  • show less
    DOI: 10.3788/LOP56.140001 Cite this Article Set citation alerts
    Xiahui Yu, Kaixiang Du, Peizhi Yang. Preparation of Low-Dimensional Black Phosphorus and its Application in Solar Cells[J]. Laser & Optoelectronics Progress, 2019, 56(14): 140001 Copy Citation Text show less
    References

    [1] Bridgman P W. Two new modifications of phosphorus[J]. Journal of the American Chemical Society, 36, 1344-1363(1914).

    [2] Shirotani I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties[J]. Molecular Crystals and Liquid Crystals, 86, 203-211(1982).

    [3] Endo S, Akahama Y, Terada S I et al. Growth of large single crystals of black phosphorus under high pressure[J]. Japanese Journal of Applied Physics, 21, L482-L484(1982).

    [4] Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries[J]. Advanced Materials, 19, 2465-2468(2007).

    [5] Lange S, Schmidt P, Nilges T. Au3SnP7@black phosphorus: an easy access to black phosphorus[J]. Inorganic Chemistry, 46, 4028-4035(2007).

    [6] Liu H, Neal A T, Zhu Z et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 8, 4033-4041(2014).

    [7] Li L K, Yu Y J, Ye G J et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 9, 372-377(2014).

    [8] Lu W L, Nan H Y, Hong J H et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization[J]. Nano Research, 7, 853-859(2014).

    [9] Buscema M, Groenendijk D J, Blanter S I et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 14, 3347-3352(2014).

    [10] Brent J R, Savjani N, Lewis E A et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 50, 13338-13341(2014).

    [11] Guo Z N, Zhang H, Lu S B et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Advanced Functional Materials, 25, 6996-7002(2015).

    [12] Yasaei P, Kumar B, Foroozan T et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation[J]. Advanced Materials, 27, 1887-1892(2015).

    [13] Zhu C Y, Xu F, Zhang L et al. Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing[J]. Chemistry-A European Journal, 22, 7357-7362(2016).

    [14] Kang J, Wells S A, Wood J D et al. Stable aqueous dispersions of optically and electronically active phosphorene[J]. Proceedings of the National Academy of Sciences, 113, 11688-11693(2016).

    [15] Ambrosi A, Sofer Z, Pumera M. Electrochemical exfoliation of layered black phosphorus into phosphorene[J]. Angewandte Chemie International Edition, 56, 10443-10445(2017).

    [16] Zhang X, Xie H M, Liu Z D et al. Black phosphorus quantum dots[J]. Angewandte Chemie International Edition, 54, 3653-3657(2015).

    [17] Sun Z, Xie H, Tang S et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents[J]. Angewandte Chemie International Edition, 54, 11526-11530(2015).

    [18] Xu Y H, Wang Z T, Guo Z N et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 4, 1223-1229(2016).

    [19] Smith J B, Hagaman D, Ji H F. Growth of 2D black phosphorus film from chemical vapor deposition[J]. Nanotechnology, 27, 215602(2016).

    [20] Yang Z B, Hao J H, Yuan S G et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition[J]. Advanced Materials, 27, 3748-3754(2015).

    [21] Yan J H, Xu S F, Shen X H et al. All fiber-optic sensor measuring optical power density and temperature based on PbSe quantum dots[J]. Laser & Optoelectronics Progress, 55, 100602(2018).

    [22] Chen W B, Ma H, Ye J X et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 54, 110003(2017).

    [23] Tan H, Ni Z Y, Pi X D et al. Research progress in application of silicon quantum dots in optoelectronic devices[J]. Laser & Optoelectronics Progress, 54, 030006(2017).

    [24] Chen X L, Wu Y Y, Wu Z F et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations[J]. Nature Communications, 6, 7315(2015).

    [25] Deng Y X, Luo Z, Conrad N J et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode[J]. ACS Nano, 8, 8292-8299(2014).

    [26] Dai J, Zeng X C. Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells[J]. The Journal of Physical Chemistry Letters, 5, 1289-1293(2014).

    [27] Huang L, Huo N J, Li Y et al. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals p-n heterostructure[J]. The Journal of Physical Chemistry Letters, 6, 2483-2488(2015).

    [28] Huang L, Li Y, Wei Z M et al. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure[J]. Scientific Reports, 5, 16448(2015).

    [29] Bai L Y, Sun L Q, Wang Y et al. Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells[J]. Journal of Materials Chemistry A, 5, 8280-8286(2017).

    [30] Yang Y, Gao J, Zhang Z et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells[J]. Advanced Materials, 28, 8937-8944(2016).

    [31] Lin S H, Liu S H, Yang Z B et al. Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics[J]. Advanced Functional Materials, 26, 864-871(2016).

    [32] Li Q D, Yang J W, Huang C et al. Solution processed black phosphorus quantum dots for high performance silicon/organic hybrid solar cells[J]. Materials Letters, 217, 92-95(2018).

    [33] Zhao Y, Chen T L, Xiao L G et al. Facile integration of low-cost black phosphorus in solution-processed organic solar cells with improved fill factor and device efficiency[J]. Nano Energy, 53, 345-353(2018).

    [34] Huang H, Li J, Yi Y. et al. In situ growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheets[J]. Chemical Communications, 54, 2365-2368(2018).

    [35] Muduli S K, Varrla E, Kulkarni S A et al. 2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells[J]. Journal of Power Sources, 371, 156-161(2017).

    [36] Chen W, Li K W, Wang Y et al. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 8, 591-598(2017).

    [37] Fu N Q, Huang C, Lin P et al. Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells[J]. Journal of Materials Chemistry A, 6, 8886-8894(2018).

    [38] Li K W, Wan Z Y, Lin X N. Black phosphorus quantum dots as doping material to increase efficiency of typical planar hybrid perovskite solar cells[J]. DEStech Transactions on Materials Science and Engineering, 10824(2017).

    Xiahui Yu, Kaixiang Du, Peizhi Yang. Preparation of Low-Dimensional Black Phosphorus and its Application in Solar Cells[J]. Laser & Optoelectronics Progress, 2019, 56(14): 140001
    Download Citation