• Acta Optica Sinica
  • Vol. 40, Issue 15, 1512003 (2020)
Yonghua Li1, Kewei Pan3, Li Ping2, Bin Yang2, Haitao Yu1、*, and Jianqi Shen1
Author Affiliations
  • 1College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 3Solid Rocket Motor Technology Development Research Center, Shanghai Space Propulsion Technology Research Institute, Shanghai 201109, China
  • show less
    DOI: 10.3788/AOS202040.1512003 Cite this Article Set citation alerts
    Yonghua Li, Kewei Pan, Li Ping, Bin Yang, Haitao Yu, Jianqi Shen. Online Size Measurement of Burning Particles of Solid Propellants[J]. Acta Optica Sinica, 2020, 40(15): 1512003 Copy Citation Text show less
    References

    [1] Tang J L, Liu P J[M]. Principles of solid rocket motor, 50-54(2013).

    [2] Li S F, Jin L J. Effects of aluminum particle size on combustion behavior of propellants[J]. Energetic Materials, 4, 68-74(1996).

    [3] Takahashi K, Oide S, Kuwahara T. Agglomeration characteristics of aluminum particles in AP/AN composite propellants[J]. Propellants, Explosives, Pyrotechnics, 38, 555-562(2013).

    [4] Yao L C, Wu X C, Lin X D et al. Measurement of burning biomass particles via high-speed digital holography[J]. Laser & Optoelectronics Progress, 56, 100901(2019).

    [5] Li S F, Jin R C. Particle size analysis of combustion residue of solid propellant[J]. Journal of Solid Rocket Technology, 18, 23-28(1995).

    [6] Liu X. Investigation on aluminum agglomeration on the burning surface of solid propellants by optical observation technology Xi'an:[D]. Northwestern Polytechnical University, 31-54(2016).

    [7] Jin B N, Liu P J, Wang Z X. Application of digital holography in 3D measurement of aluminum combustion in solid propellant[J]. Journal of Propulsion Technology, 39, 2102-2109(2018).

    [8] Qiu J, Chen C, Luo X Q et al. An on-line measurement method for particle diameter determinations of solid-phase products of a SRM combustor[J]. Journal of Solid Rocket Technology, 41, 303-307, 312(2018).

    [9] Xu F, Cai X S, Zhao Z J et al. Discussion of Fraunhofer diffraction theory and Mie's theory in particle sizing[J]. China Powder Science and Technology, 9, 1-6(2003).

    [10] Xu F, Cai X S, Shen J Q. Geometric approximation of light scattering in arbitrary diffraction regime for absorbing particles: application in laser particle sizing[J]. Acta Optica Sinica, 23, 1464-1469(2003).

    [11] Cai X S, Su M X, Shen J Q et al[M]. Particle sizing technology and application, 67-76(2010).

    [12] Zhang M G, Weng Z X, Huang Z M et al. Characterization of statistical average particle size and particle size distribution[J]. Polymer Materials Science & Engineering, 16, 1-4(2000).

    [13] Wang T E, Shen J Q, Lin C J. Vector similarity retrieval algorithm in particle size distribution analysis of forward scattering[J]. Acta Optica Sinica, 36, 0629002(2016).

    [14] Yang B, Guo H R, Gui X Y et al. On-line combustion temperature measurements of solid rocket propellant by using radiation spectroscopy[J]. Spectroscopy and Spectral Analysis, 38, 1958-1962(2018).

    [15] Shen J Q, Wang N N. A discussion on the criterion number X of a small-angle forward scattering laser particle sizer[J]. Chinese Journal of Lasers, 25, 891-896(1998).

    [16] Hu H, Zhang F G, Lü Q N et al. Measurement upper limit of laser particle size analyzer[J]. Acta Optica Sinica, 38, 0429001(2018).

    Yonghua Li, Kewei Pan, Li Ping, Bin Yang, Haitao Yu, Jianqi Shen. Online Size Measurement of Burning Particles of Solid Propellants[J]. Acta Optica Sinica, 2020, 40(15): 1512003
    Download Citation