• Laser & Optoelectronics Progress
  • Vol. 51, Issue 11, 110009 (2014)
[in Chinese]*, [in Chinese], [in Chinese], and Nemkova Anastasia
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.110009 Cite this Article Set citation alerts
    [in Chinese], [in Chinese], [in Chinese], Nemkova Anastasia. Recent Progress on Research and Development of Electro-optical Modulators on Silicon Substrates[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110009 Copy Citation Text show less
    References

    [1] Yu Jinzhong. Advances and tendency of silicon photonics [J]. Laser & Optoelectronics Progress, 2006, 43(12): 68-71.

    [2] Qiu Yuanwu. Silicon photonics [J]. Laser & Optoelectronics Progress, 2006, 43(9): 36-41.

    [3] Zhou Zhiping, Gao Dingshan, Wang Yi, et al.. Progress on si-based optoelectronic devices and integration [J]. Laser & Optoelectronics Progress, 2007, 44(2): 31-38.

    [4] Liu Yi, Tong Xiaogang, Yu Jinlong, et al.. All-optical switching in silicon-on-insulator serially coupled double-ring resonator based on thermal nonlinear effect [J]. Chinese J Lasers, 2013, 40(2): 0205006.

    [5] Chen Zhiyong, Hao Xiaolong, Zheng Yanmin, et al.. Large-angle polarization-independent broadband filters based on silicon photonic crystal slabs [J]. Chinese J Lasers, 2013, 40(3): 0305002.

    [6] Cui Naidi, Liang Jingqiu, Liang Zhongzhu, et al.. Two-stage photonic crystal beam compressor based on silicon nanowire waveguide [J]. Acta Optica Sinica, 2012, 32(1): 0123004.

    [7] Wang Zhi, Zhang Limei, Chen Yingchuan, et al.. Two mode interference for nano SOI waveguide [J]. Chinese J Lasers, 2012, 39(7): 0705003.

    [8] Ren Yan, Song Muping. Optical NRZ-to-RZ modulation format conversion based on cross-phase modulation effects in silicon micro-ring resonator [J]. Acta Optica Sinica, 2013, 33(7): 0706002.

    [9] X Xiao, H Xu, X Li, et al.. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization [J]. Opt Express, 2013, 21(4): 4116-4125.

    [10] D J Thomson, F Y Gardes, J M Fedeli, et al.. 50-Gb/s silicon optical modulator [J]. IEEE Photon Technol Lett, 2012, 24(4): 234-236.

    [11] Po Dong, Long Chen, Young-kai Chen. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators [J]. Opt Express, 2012, 20(6): 6163-6169.

    [12] X Tu, T Liow, J Song, et al.. 50 Gb/s silicon optical modulator with traveling-wave electrodes [J]. Opt Express, 2013, 21(10): 12776-12782.

    [13] M Streshinsky, R Ding, Y Liu, et al.. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm [J]. Opt Express, 2013, 21(25): 30350-30357.

    [14] T Baba, S Akiyama, M Imai, et al.. 50 Gb/s ring-resonator-based silicon modulator [J]. Opt Express, 2013, 21(10): 11869-11876.

    [15] Ran Ding, Yang Liu, Qi Li, et al.. Design and characterization of a 30 GHz bandwidth low-power silicon traveling-wave modulator [J]. Opt Commun, 2014, 321: 124-133.

    [16] Jianfeng Ding, Ruiqiang Ji, Lei Zhang, et al.. Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator [J]. J Lightwave Technol, 2013, 31(14): 2434-2440.

    [17] J C Rosenberg, W M J Green, S Assefa, et al.. A 25 Gb/s silicon microring modulator based on an interleaved junction [J]. Opt Express, 2012, 20(24): 26411-26423.

    [18] Guoliang Li, Xuezhe Zheng, Jin Yao, et al.. 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning [J]. Opt Express, 2011, 19(21): 20435-20443.

    [19] H Xu, X Y Li, X Xiao, et al.. Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators [J]. IEEE J Sel Top Quantum Electron, 2014, 20(4): 3400110.

    [20] G Kim, J Park, I Kim, et al.. Compact-sized high-modulation-efficiency silicon Mach-Zehnder modulator based on a vertically dipped depletion junction phase shifter for chip-level integration [J]. Opt Lett, 2014, 39(8): 2310-2313.

    [21] J Hendrickson, R Soref, J Sweet, et al.. Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: design and simulation [J]. Opt Express, 2014, 22(3): 3271-3283.

    [22] Xianyao Li, Xi Xiao, Hao Xu, et al.. Highly efficient silicon Michelson interferometer modulators [J]. IEEE Photon Technol Lett, 2013, 25(5): 407-409.

    [23] L Yang, T Hu, R Hao, et al.. Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide [J]. Opt Lett, 2013, 38(14): 2512-2515.

    [24] R Audet, E Edwards, K Balram, et al.. Surface-normal Ge/SiGe asymmetric Fabry-Perot optical modulators fabricated on silicon substrates [J]. J Lightwave Technol, 2013, 31(24): 3995-4003.

    [25] Mu Xu, Fei Li, Tao Wang, et al.. Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter [J]. J Lightwave Technol, 2013, 31(8): 1170-1177.

    [26] Palmer R, Alloatti L, Korn D, et al.. Low power Mach-Zehnder modulator in silicon-organic hybrid technology [J]. IEEE Photon Technol Lett, 2013, 25(13): 1226-1229.

    [27] X Zhang, A Hosseini, S Chakravarty, et al.. Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide [J]. Opt Lett, 2013, 38(22): 4931-4934.

    CLP Journals

    [1] Zhao Yuanli, Wu Baojian, Liao Mingle, Geng Yong, Qiu Kun. Crosstalk Analysis of Optical Switching Chips with DQPSK Signal Transmission Experiment[J]. Acta Optica Sinica, 2016, 36(1): 113001

    [in Chinese], [in Chinese], [in Chinese], Nemkova Anastasia. Recent Progress on Research and Development of Electro-optical Modulators on Silicon Substrates[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110009
    Download Citation