[1] Ekert A K, Quantum cryptography based on Bell’s theorem [J]. Phys. Rev. Lett., 1991, 67: 661.
[2] Bennett C H, et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states [J]. Phys. Rev. Lett., 1992, 69: 2881.
[3] Bennett C H, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70: 1895.
[4] Raussendorf R, Briegel H J. A one-way quantum computer [J]. Phy. Rev. Lett., 2001, 86: 5188.
[5] Nielsen M A. Cluster-state quantum computation [J]. Rep. Math. Phys., 2006, 57: 147.
[6] Bruss D, et al. Optimal universal and state-dependent quantum cloning [J]. Phys. Rev. A, 1998, 57: 2368.
[7] Murao M, et al. Quantum telecloning and multiparticle entanglement [J]. Phys. Rev. A, 1999, 59: 156.
[8] Greenberger D M, et al. Bell’s theorem without inequalities [J]. Am. J. Phys., 1990, 58: 1131.
[9] Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways [J]. Phys. Rev. A, 2000, 62: 062314.
[10] Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles [J]. Phys. Rev. Lett., 2001, 86: 910.
[11] Wang H F, et al. Linear optical generation of multipartite entanglement with conventional photon detectors [J]. Phys. Rev. A, 2009, 79: 042336.
[12] Deng Z J, Feng M, Gao K L. Simple scheme for generating an n-qubit W state in cavity QED [J]. Phys. Rev. A, 2006, 73: 014302.
[13] Zheng S B. Generation of entangled states of multiple trapped ions in thermal motion [J]. Phys. Rev. A, 2004, 70: 045804.
[14] van Enk S J. Quantum communication with dark photons [J]. Phys. Rev. A, 1999, 59: 2659.
[15] Clark S. Unconditional preparation of entanglement between atoms in cascaded optical cavities [J]. Phys. Rev. Lett., 2003, 91: 177901.
[16] Bose S. Proposal for teleportation of an atomic state via cavity decay [J]. Phys. Rev. Lett., 1999, 83: 5158.
[17] Duan L M, Kimble H J. Efficient engineering of multiatom entanglement through single-photon detections [J]. Phys. Rev. Lett., 2003, 90: 253601.
[18] Pellizzari T. Quantum networking with optical fibres [J]. Phys. Rev. Lett., 1997, 79: 5242.
[19] Ye S Y, Zhong Z R, Zheng S B. Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities [J]. Phys. Rev. A, 2008, 77: 014303.
[20] Chen L B, et al. Generation of entanglement via adiabatic passage [J]. Phys. Rev. A, 2007, 76: 062304.
[21] Song J, Xia Y, Song H S. Entangled state generation via adiabatic passage in two distant cavities [J]. J. Phys. B. At. Mod. Opt. Phys., 2007, 40: 4503.
[22] Li Y L, Fang M F. Generation of entanglement in the atom-cavity-fibre system via adiabatic passage [J]. Chin. Phys. B, 2010, 19: 030311.
[23] Yin Z Q, Li F L. Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber [J]. Phys. Rev. A, 2007, 75: 012324.
[24] Serafini A, Mancini S, Bose S. Distributed quantum computation via optical fibers [J]. Phys. Rev. Lett., 2006, 96: 010503.
[25] Zheng S B. Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities [J]. The European Physical Journal D, 2009, 54: 719-722.
[26] Spillane S M, et al. Ideality in a fiber-taper-Coupled microresonator system for application to cavity quantum electrodynamics [J]. Phys. Rev. Lett., 2003, 91: 043902.
[27] Boozer A D, et al. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity [J]. Phys. Rev. Lett., 2006, 97: 083602.
[28] Bergmann K, Theuer H, et al. Coherent population transfer among quantum states of atoms and molecules [J]. Rev. Mod. Phys., 1998, 70: 1003.
[29] Meystre P. Cavity quantum optics and the quantum measurement process [J]. Progress in Optics, 1992, 30: 261-335.
[30] Kwiat P G, et al. New high-intensity source of polarization-entangled photon pairs [J]. Phys. Rev. Lett., 1995, 75: 4337.
[31] Walther P, et al. Experimental one-way quantum computing [J]. Nature, 2005, 434: 169.