• Photonics Research
  • Vol. 8, Issue 9, 1475 (2020)
Edgars Nitiss1, Boris Zabelich1, Ozan Yakar1, Junqiu Liu2, Rui Ning Wang2, Tobias J. Kippenberg2, and Camille-Sophie Brès1、*
Author Affiliations
  • 1Ecole Polytechnique Fédérale de Lausanne (EPFL), Photonic Systems Laboratory (PHOSL), STI-IEL, Station 11, CH-1015 Lausanne, Switzerland
  • 2Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, CH-1015 Lausanne, Switzerland
  • show less
    DOI: 10.1364/PRJ.396489 Cite this Article Set citation alerts
    Edgars Nitiss, Boris Zabelich, Ozan Yakar, Junqiu Liu, Rui Ning Wang, Tobias J. Kippenberg, Camille-Sophie Brès. Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides[J]. Photonics Research, 2020, 8(9): 1475 Copy Citation Text show less
    References

    [1] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [2] E. Timurdogan, C. V. Poulton, M. J. Byrd, M. R. Watts. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics, 11, 200-206(2017).

    [3] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [4] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [5] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [6] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [7] C. Xiong, W. H. P. Pernice, H. X. Tang. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett., 12, 3562-3568(2012).

    [8] B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, C. Lee. Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics. Opt. Lett., 44, 73-76(2019).

    [9] A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, H. X. Tang. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett., 113, 131102(2018).

    [10] J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).

    [11] M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron., 28, 2631-2654(1992).

    [12] A. Billat, D. Grassani, M. H. P. Pfeiffer, S. Kharitonov, T. J. Kippenberg, C. S. Brès. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun., 8, 1016(2017).

    [13] E. Nitiss, T. Liu, D. Grassani, M. Pfeiffer, T. J. Kippenberg, C.-S. Brès. Formation rules and dynamics of photo-induced χ(2) gratings in silicon nitride waveguides. ACS Photon., 7, 147-153(2019).

    [14] M. A. G. Porcel, J. Mak, C. Taballione, V. K. Schermerhorn, J. P. Epping, P. J. M. van der Slot, K.-J. Boller. Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides. Opt. Express, 25, 33143-33159(2017).

    [15] M. A. G. Porcel, J. Mak, C. Taballione, V. K. Schermerhorn, J. P. Epping, P. J. M. van der Slot, K.-J. Boller. Photoinduced χ(2) for second harmonic generation in stoichiometric silicon nitride waveguides. Proc. SPIE, 10228, 102280R(2017).

    [16] D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, S. B. Papp. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics, 13, 494-499(2019).

    [17] D. Z. Anderson, V. Mizrahi, J. E. Sipe. Model for second-harmonic generation in glass optical fibers based on asymmetric photoelectron emission from defect sites. Opt. Lett., 16, 796-798(1991).

    [18] N. B. Baranova, B. Y. Zel’dovich, A. N. Chudinov, A. A. Shul’ginov. Theory and observation of polar asymmetry of photoionization in a field with <E3>≠0. Zh. Eksp. Teor. Fiz., 98, 1857-1868(1990).

    [19] E. M. Dianov, D. S. Starodubov. Photoinduced generation of the second harmonic in centrosymmetric media. Quantum Electron., 25, 395-407(1995).

    [20] E. Nitiss, O. Yakar, A. Stroganov, C.-S. Brès. Highly tunable second-harmonic generation in all-optically poled silicon nitride waveguides. Opt. Lett., 45, 1958-1961(2020).

    [21] A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, A. L. Gaeta. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 40, 5117-5120(2015).

    [22] H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Brès, T. J. Kippenberg. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics, 12, 330-335(2018).

    [23] D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, C.-S. Brès. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nat. Commun., 10, 1553(2019).

    [24] J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, K.-J. Boller. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Opt. Express, 23, 19596-19604(2015).

    [25] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [26] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1353(2018).

    [27] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [28] Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, M. Qi. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 3, 1171-1180(2016).

    [29] Z. Ye, K. Twayana, P. A. Andrekson, V. Torres-Company. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express, 27, 35719-35727(2019).

    [30] S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, A. L. Gaeta. Silicon-nitride platform for narrowband entangled photon generation(2015).

    [31] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, R. Morandotti. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176-1180(2016).

    [32] M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, M. M. Fejer. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40-46(2020).

    [33] M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, T. J. Kippenberg. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 5, 884-892(2018).

    [34] L. Cai, A. V. Gorbach, Y. Wang, H. Hu, W. Ding. Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides. Sci. Rep., 8, 12478(2018).

    [35] G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, J. L. Hall, S. T. Cundiff. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics. Science, 286, 1507-1512(1999).

    [36] H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B, 69, 327-332(1999).

    [37] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006-1011(2018).

    [38] X. Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi, A. M. Weiner. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt. Express, 24, 687-698(2016).

    Edgars Nitiss, Boris Zabelich, Ozan Yakar, Junqiu Liu, Rui Ning Wang, Tobias J. Kippenberg, Camille-Sophie Brès. Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides[J]. Photonics Research, 2020, 8(9): 1475
    Download Citation