• Optics and Precision Engineering
  • Vol. 30, Issue 14, 1716 (2022)
Tao HUANG1, Zhihong LUO1, Guibao TAO1,*, and Mingxiang LING2,*
Author Affiliations
  • 1College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing400044, China
  • 2Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang61999, China
  • show less
    DOI: 10.37188/OPE.20223014.1716 Cite this Article
    Tao HUANG, Zhihong LUO, Guibao TAO, Mingxiang LING. Hammerstein modeling and feedback linearization control for piezoelectric positioning stage[J]. Optics and Precision Engineering, 2022, 30(14): 1716 Copy Citation Text show less
    References

    [1] R LIU, L WANG, J M JIN et al. A novel 3-DoF piezoelectric robotic pectoral fin: design, simulation, and experimental investigation. Smart Materials and Structures, 31(2022).

    [2] 2范伟, 傅雨晨, 于欣妍. 压电陶瓷驱动器的迟滞非线性规律[J]. 光学 精密工程, 2019, 27(8): 1793-1799. doi: 10.3788/ope.20192708.1793FANW, FUY C, YUX Y. Hysteresis nonlinear law of piezoelectric ceramic actuator[J]. Opt. Precision Eng., 2019, 27(8): 1793-1799.(in Chinese). doi: 10.3788/ope.20192708.1793

    [3] G Y GU, L M ZHU, C Y SU et al. Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Transactions on Automation Science and Engineering, 13, 313-332(2016).

    [4] K AHMED, P YAN, S LI. Duhem model-based hysteresis identification in piezo-actuated nano-stage using modified particle swarm optimization. Micromachines, 12, 315(2021).

    [5] I AHMAD, M A ALI. Robust μ-synthesis with dahl model based feedforward compensator design for piezo-actuated micropositioning stage. IEEE Access, 141799-141813(8).

    [6] 6王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学 精密工程, 2018, 26(10): 2484-2492. doi: 10.3788/ope.20182610.2484WANGZ Y, JIAG X. Asymmetric hysteresis modeling and internal model control of piezoceramic actuators[J]. Opt. Precision Eng., 2018, 26(10): 2484-2492.(in Chinese). doi: 10.3788/ope.20182610.2484

    [7] P B NGUYEN, S B CHOI, B K SONG. A new approach to hysteresis modelling for a piezoelectric actuator using Preisach model and recursive method with an application to open-loop position tracking control. Sensors and Actuators A: Physical, 270, 136-152(2018).

    [8] M JANAIDEH, M RAKOTONDRABE. Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities. Nonlinear Dynamics, 104, 3385-3405(2021).

    [9] 9徐金秋, 娄军强, 杨依领, 等. 压电宏纤维致动器的双极性非对称迟滞建模及补偿控制[J]. 振动工程学报, 2021, 34(1): 159-165. doi: 10.16385/j.cnki.issn.1004-4523.2021.01.018XUJ Q, LOUJ Q, YANGY L, et al. Modeling and feedforward comprehension control on the bipolar asymmetric hysteresis of marco fiber composite(MFC)actuators[J]. Journal of Vibration Engineering, 2021, 34(1): 159-165.(in Chinese). doi: 10.16385/j.cnki.issn.1004-4523.2021.01.018

    [10] R XU, D P TIAN, Z S WANG. Adaptive tracking control for the piezoelectric actuated stage using the krasnosel'skii-pokrovskii operator. Micromachines, 11, 537(2020).

    [11] J LING, Z FENG, D D ZHENG et al. Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control. Mechanical Systems and Signal Processing, 150, 107235(2021).

    [12] X L ZHAO, H XIE, H P PAN. Modeling rate-dependent hysteresis in piezoelectric actuators using T-S fuzzy system based on expanded input space method. Sensors and Actuators A: Physical, 283, 123-127(2018).

    [13] Y F LIU, J Y SHE, H Y DUAN et al. Hybrid model based on maxwell-slip model and relevance vector machine. IEEE Transactions on Industrial Electronics, 68, 10050-10057(2021).

    [14] 14李致富, 黄楠, 钟云, 等. 压电驱动器迟滞非线性的分数阶建模及实验验证[J]. 光学 精密工程, 2020, 28(5): 1124-1131.LIZ F, HUANGN, ZHONGY, et al. Fractional order modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators[J]. Opt. Precision Eng., 2020, 28(5): 1124-1131.(in Chinese)

    [15] M J YANG, C X LI, G Y GU et al. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator. Frontiers of Mechanical Engineering, 10, 37-42(2015).

    [16] Z J WEN, Y DING, P K LIU et al. An efficient identification method for dynamic systems with coupled hysteresis and linear dynamics: application to piezoelectric-actuated nanopositioning stages. IEEE/ASME Transactions on Mechatronics, 24, 326-337(2019).

    [17] Y H ZHAO, G MENG, W M ZHANG. Characterization and modeling of viscoelastic hysteresis in a dielectric elastomer actuator. Smart Materials and Structures, 29(2020).

    [18] X K CHEN, C Y SU, Z LI et al. Design of implementable adaptive control for micro/nano positioning system driven by piezoelectric actuator. IEEE Transactions on Industrial Electronics, 63, 6471-6481(2016).

    [19] X B SHAN, H N SONG, H CAO et al. A dynamic hysteresis model and nonlinear control system for a structure-integrated piezoelectric sensor-actuator. Sensors, 21, 269(2021).

    [20] Y F FAN, U X TAN. Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking. IEEE/ASME Transactions on Mechatronics, 24, 853-862(2019).

    [21] 21郑述峰,朱玉川,凌杰,等.轴向双压电叠堆执行器并联控制实验研究[J].北京航空航天大学学报,2021:1-11.ZHENGS F, ZHUY C, LINGJ, et al. Experimental study on parallel control of an axial dual-piezoelectric stack actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021: 1-11. (in Chinese)

    CLP Journals

    [1] [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Study on Composite Control System for Piezoelectric Ceramic Positioning Platform[J]. Piezoelectrics & Acoustooptics, 2023, 45(6): 866

    Tao HUANG, Zhihong LUO, Guibao TAO, Mingxiang LING. Hammerstein modeling and feedback linearization control for piezoelectric positioning stage[J]. Optics and Precision Engineering, 2022, 30(14): 1716
    Download Citation