• Matter and Radiation at Extremes
  • Vol. 7, Issue 5, 055701 (2022)
Ke Lana)
Author Affiliations
  • Institute of Applied Physics and Computational Mathematics, Beijing 100094, China and HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1063/5.0103362 Cite this Article
    Ke Lan. Dream fusion in octahedral spherical hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(5): 055701 Copy Citation Text show less
    References

    [1] A.Thiessen, L.Wood, G.Zimmerman, J.Nuckolls. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139(1972).

    [2] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).

    [3] J.Meyer-ter-Vehn, S.Atzeni. The Physics of Inertial Fusion(2004).

    [4] W. J.Hogan, E. M.Campbell. The National Ignition Facility—Applications for inertial fusion energy and high-energy-density science. Plasma Phys. Controlled Fusion, 41, B39(1999).

    [5] J. D.Lindl, E. I.Moses. Special Topic: Plans for the National Ignition Campaign (NIC) on the National Ignition Facility (NIF): On the threshold of initiating ignition experiments. Phys. Plasmas, 18, 050901(2011).

    [6] J.Crippen, T.Bunn, L.Divol, J.Biener, A.Pak, S.Bhandarkar, L. R.Bennedetti, L. F.Berzak Hopkins, E. L.Dewald, S.Le Papeet?al.. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett., 120, 245003(2018).

    [7] D.Clery. Laser-powered fusion effort nears, ‘ignition. Science, 373, 841(2021).

    [8] J.Adams, B.Addis, P.Adams, R.Acree, R.Aden, H.Abu-Shawarebet?al.. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett., 129, 075001(2022).

    [9] J. E.Ralph, D. A.Callahan, A. L.Kritcher, O. A.Hurricane, D. T.Casey, A. B.Zylstraet?al.. Experimental achievement and signatures of ignition at the National Ignition Facility. Phys. Rev. E, 106, 025202(2022).

    [10] O. A.Hurricane, A. B.Zylstra, A. L.Kritcher, D. S.Clark, D. A.Callahan, C. R.Weberet?al.. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition. Phys. Rev. E, 106, 025201(2022).

    [11] P.Michel, D. A.Callahan, S.Weber, E. A.Williams, C. A.Thomas, L.Divolet?al.. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett., 102, 025004(2009).

    [12] O. S.Jones, A.Kritcher, R.Tommasini, J. R.Rygg, D. K.Bradley, R. P. J.Townet?al.. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility. Phys. Plasmas, 21, 056313(2014).

    [13] R.Town, B.Spears, D.Bradley, A. L.Kritcher, D.Clark, O.Joneset?al.. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility. Phys. Plasmas, 21, 042708(2014).

    [14] A.Pak, S. L.Pape, E. L.Dewald, N. B.Meezan, L. F.Berzak Hopkins, L.Divolet?al.. Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity. Phys. Plasmas, 24, 056309(2017).

    [15] K. L.Baker, O. A.Hurricane, L. R.Benedetti, C. A.Thomas, D. A.Callahan, J. E.Ralphet?al.. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility laser. Phys. Plasmas, 25, 056305(2018).

    [16] O. A.Hurricane, D. A.Callahan, D. T.Casey, D.Clark, A. L.Kritcher, D. E.Hinkelet?al.. Integrated modeling of cryogenic layered highfoot experiments at the NIF. Phys. Plasmas, 23, 052709(2016).

    [17] P. T.Springer, J. L.Milovich, C. J.Cerjan, H. F.Robey, M. M.Marinak, O. S.Joneset?al.. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments. Phys. Plasmas, 19, 056315(2012).

    [18] J. D.Moody, D. A.Callahan, J. L.Kline, D. E.Hinkel, N. B.Meezan, S. H.Glenzeret?al.. Hohlraum energetics scaling to 520 TW on the National Ignition Facility. Phys. Plasmas, 20, 056314(2013).

    [19] H. F.Robey, D. A.Callahan, A. B.Zylstra, O. A.Hurricane, J. E.Ralph, A. L.Kritcheret?al.. Burning plasma achieved in inertial fusion. Nature, 601, 542(2022).

    [20] C. E.Czajka, S. F.Khan, L. P.Masse, T.Ma, S. A.MacLaren, G. A.Kyralaet?al.. A near one-dimensional indirectly driven implosion at convergence ratio 30. Phys. Plasmas, 25, 056311(2018).

    [21] W.Huo, J.Liu, K.Lan, G.Ren. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model. Matter Radiat. Extremes, 2, 22(2017).

    [22] E.Moses, O.Landen, J.Edwards, J.Lindl. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [23] 2015 review of the inertial confinement fusion and high energy density science portfolio: Volume I(2016).

    [24] Lawrence Livermore National Laboratory. Lasers indirect drive input to NNSA 2020 report.

    [25] J.-L.Miquel, E.Prene. LMJ & PETAL status and program overview. Nucl. Fusion, 59, 032005(2019).

    [26] D.Hu, W.Zheng, F.Jing, X.Yuan, X.Wei, Q.Zhuet?al.. Laser performance upgrade for precise ICF experiment in SG-III laser facility. Matter Radiat. Extremes, 2, 243(2017).

    [27] J.Liu, K.Lan, X.-T.He, D.Lai, W.Zheng. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at a golden hohlraum-to-capsule radius ratio(2013).

    [28] X.-T.He, K.Lan, D.Lai, W.Zheng, J.Liu. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at a golden hohlraum to-capsule radius ratio. Phys. Plasmas, 21, 010704(2014).

    [29] D.Lai, J.Liu, X.-T.He, K.Lan, W.Zheng. Octahedral spherical hohlraum and its laser arrangement for inertial fusion. Phys. Plasmas, 21, 052704(2014).

    [30] K.Lan, W.Zheng. Novel spherical hohlraum with cylindrical laser entrance holes and shields. Phys. Plasmas, 21, 090704(2014).

    [31] K.Lan, S.Li, J.Liu. Study on size of laser entrance hole shield for ignition octahedral spherical hohlraums. Laser Part. Beams, 33, 731(2015).

    [32] D.Yang, J.Liu, G.Ren, K.Lan, Z.Li, W.Huoet?al.. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole. Matter Radiat. Extremes, 1, 2(2016).

    [33] Z.Li, J.Liu, D.Yang, K.Lan, S.Li, G.Ren, W. Y.Huoet?al.. Comparison of the laser spot movement inside cylindrical and spherical hohlraums. Phys. Plasmas, 24, 072711(2017).

    [34] W. Y.Huo, J.Liu, Z.Li, K.Lan, X.Xie, Y. H.Chenet?al.. First investigation on the radiation field of the spherical hohlraum. Phys. Rev. Lett., 117, 025002(2016).

    [35] S.Li, Z.Li, Y.Huang, X.Xie, D.Yang, L.Jinget?al.. Radiation flux study of spherical hohlraums at the SGIII prototype facility. Phys. Plasmas, 23, 112701(2016).

    [36] Z.Li, G.Ren, W. Y.Huo, Y.-H.Chen, X.Xie, H.Caoet?al.. First octahedral spherical hohlraum energetics experiment at the SGIII laser facility. Phys. Rev. Lett., 120, 165001(2018).

    [37] Y. H.Chen, Z.Li, X.Xie, C.Zheng, K.Lan, C.Zhaiet?al.. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target. Phys. Rev. E, 95, 031202(2017).

    [38] C.Zhai, Z.Li, C.Zheng, L.Hao, X.Xie, Y.Chenet?al.. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility. Matter Radiat. Extremes, 2, 77(2017).

    [39] K.Lan, J.Wu, Y.Chen, H.Cao, Z.Li, Y.Donget?al.. First inertial confinement fusion implosion experiment in octahedral spherical hohlraum. Phys. Rev. Lett., 127, 245001(2021).

    [40] L.Jing, Y.Huang, Y.Ding, S.Jiang. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion. Phys. Plasmas, 21, 102710(2014).

    [41] S.Zou, W.Pei, H.Duan, C.Wu. Theoretical study of symmetry of flux onto a capsule. Phys. Plasmas, 22, 092704(2015).

    [42] L.Ren, J.Zhu, D.Zhao. Beam guiding system geometric arrangement in the target area of high-power laser drivers. High Power Laser Sci. Eng., 3, e12(2015).

    [43] L.Jing, S.Jiang, Y.Huang, H.Li, Y.Ding, T.Huang. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes. Phys. Plasmas, 23, 012702(2016).

    [44] C.Wu, W.Pei, S.Zou, H.Duan. Instability analysis of pointing accuracy and power imbalance of spherical hohlraum. Phys. Plasmas, 23, 052703(2016).

    [45] S.Jiang, T.Huang, Y.Huang, Y.Ding, H.Li, L.Jing. A spherical hohlraum design with tetrahedral 4 laser entrance holes and high radiation performance. Phys. Plasmas, 23, 122703(2016).

    [46] L.Kuang, Y.Ding, J.Liu, S.Jiang, J.Zheng, L.Jing, H.Li, L.Li, Z.Lin, L.Zhang. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition. Sci. Rep., 6, 34636(2016).

    [47] J.Liu, J.-F.Gu, S.-Y.Zou, X.Li, S.-P.Zhu, P.-J.Gu, W.-D.Zheng, Z.-S.Dai, C.-S.Wu. A new ignition hohlraum design for indirect-drive inertial confinement fusion. Chin. Phys. B, 25, 085202(2016).

    [48] L.Kuang, S.Jiang, L.Jing, Z.Lin, L.Li, L.Zhanget?al.. Preliminary study on a tetrahedral hohlraum with four half-cylindrical cavities for indirectly driven inertial confinement fusion. Nucl. Fusion, 57, 046020(2017).

    [49] F.Philippe, M. C.Monteil, P. E.Masson-Laborde, P.Gauthier, A.Casner, V.Tassinet?al.. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums. Phys. Plasmas, 23, 022703(2016).

    [50] D. E.Hinkel, P. A.Amendt, J. H.Hammer, W. A.Farmer, M.Tabak. High-temperature hohlraum designs with multiple laser-entrance holes. Phys. Plasmas, 26, 032701(2019).

    [51] W.Wang, R. S.Craxton. Development of a beam configuration for the SG4 laser to support both direct and indirect drive.

    [52] S.Craxton. A new beam configuration to support both spherical hohlraums and symmetric direct drive.

    [53] W. Y.Wang, R. S.Craxton. Pentagonal prism spherical hohlraums for OMEGA. Phys. Plasmas, 28, 062703(2021).

    [54] W. Y.Wang, R. S.Craxton. A proposal for pentagonal prism spherical hohlraum experiments on OMEGA. LLE Review, 166(2021).

    [55] L.Kuang, W.Jiang, D.Kang, H.Shen, X.Li, Y.Donget?al.. First indirect drive experiment using a six-cylinder-port hohlraum. Phys. Rev. Lett., 128, 195001(2022).

    [56] Z.Li, J.Liu, Y.Chen, W.Huo, X.Xie, K.Lanet?al.. Progress in octahedral spherical hohlraum study. Matter Radiat. Extremes, 1, 8(2016).

    [57] S. W.Haan, J. D.Lindl, R. L.Kauffman, O. L.Landen, S. G.Glendinning, P.Amendt, R. L.Berger, S. H.Glenzer, L. J.Suter. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).

    [58] K.Lan, J.Liu, Y.Zhao, W.Zheng, W. Y.Huo. Insensitivity of the octahedral spherical hohlraum to power imbalance, pointing accuracy, and assemblage accuracy. Phys. Plasmas, 21, 114503(2014).

    [59] D.Bradley, K. L.Baker, D. A.Callahan, J. D.Moody, P. A.Amendt, D. E.Hinkelet?al.. Progress in hohlraum physics for the National Ignition Facility. Phys. Plasmas, 21, 056317(2014).

    [60] J. F.Myatt, A. V.Maximov, W.Seka, R. W.Short, D. H.Froula, J.Zhanget?al.. Multiple-beam laser–plasma interactions in inertial confinement fusion. Phys. Plasmas, 21, 055501(2014).

    [61] P.Michel, D. J.Strozzi, J. D.Moody, D. S.Bailey, L.Divol, J. E.Ralph, C. A.Thomas, G. D.Kerbel, M. B.Schneider, S. M.Sepke. Interplay of laser-plasma interactions and inertial fusion hydrodynamics. Phys. Rev. Lett., 118, 025002(2017).

    [62] S. P.Regan, E. M.Campbell, R.Betti, V. N.Goncharov, P. B.Radha, T. C.Sangsteret?al.. Laser-direct-drive program: Promise, challenge, and path forward. Matter Radiat. Extremes, 2, 37(2017).

    [63] W. H.Ye, J.Liu, K.Lan, J. F.Wu, J. W.Li, L. F.Wang, X. T.He, Z. F.Fan. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion. Phys. Plasmas, 23, 082706(2016).

    [64] W. Y.Huo, K.Lan, G.Ren, J.Liu, Y. H.Chen, J.Yanet?al.. Neutron generation by laser-driven spherically convergent plasma fusion. Phys. Rev. Lett., 118, 165001(2017).

    [65] X.Ai, M.Liu, Z.He, Q.Chen, S.Zhang, Q.Yin, Y.Huang, Y.Liu. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion. Matter Radiat. Extremes, 6, 025901(2021).

    [66] J. H.Gardner, J. H.Orens, M. H.Emery, J. P.Boris. Influence of nonuniform laser intensities on ablatively accelerated targets. Phys. Rev. Lett., 48, 253(1982).

    [67] S.Skupsky, K.Lee. Uniformity of energy deposition for laser driven fusion. J. Appl. Phys., 54, 3662(1983).

    [68] K.Niu, S.Kawata. Effect of nonuniform implosion of target on fusion parameters. J. Phys. Soc. Jpn., 53, 3416(1984).

    [69] R.Betti, R. P. J.Town, T. R.Boehly, D. D.Meyerhofer, J. P.Knauer, V. A.Smalyuk, V. N.Goncharov, P.McKenty, O. V.Gotchev, S.Skupsky. A model of laser imprinting. Phys. Plasmas, 7, 2062(2000).

    [70] D. S.Montgomery, C. B.Darrow, H. N.Kornblum, L. J.Suter, R. L.Kauffman, J. D.Kilkennyet?al.. High temperatures in inertial confinement fusion radiation cavities heated with 0.35 μm light. Phys. Rev. Lett., 73, 2320(1994).

    [71] D. T.Casey, B. A.Hammel, A. E.Pak, D. S.Clark, C. R.Weber, J. L.Milovichet?al.. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Phys. Plasmas, 26, 050601(2019).

    [72] K.Widmann, J. H.Hammer, J. D.Moody, S. A.MacLaren, M. B.Schneider, B. E.Yoxallet?al.. Novel characterization of capsule X-ray drive at the National Ignition Facility. Phys. Rev. Lett., 112, 105003(2014).

    [73] D.Yang, Y.Li, W. Y.Huo, K.Lan, X.Li, S.Liet?al.. Determination of the hohlraum M-band fraction by a shock-wave technique on the SGIII-prototype laser facility. Phys. Rev. Lett., 109, 145004(2012).

    [74] A.Caruso, C.Strangio. The quality of the illumination for a spherical capsule enclosed in a radiating cavity. Jpn. J. Appl. Phys., 30, 1095(1991).

    [75] C.Zheng, C.Zhai, Y.-H.Chen, K.Lan, H.Cao. Design of octahedral spherical hohlraum for CH Rev5 ignition capsule. Phys. Plasmas, 24, 082701(2017).

    [76] H.Cao, Z.Li, Y.Chen, K.Pan, X.Xie, S.Liet?al.. Demonstration of the feasibility of octahedral spherical hohlraum for inertial confinement fusion.

    [77] N. B.Meezan, A. J.Mackinnon, L. F.Berzak Hopkins, S.Le Pape, D. D.Ho, L.Divolet?al.. First high-convergence cryogenic implosion in a near-vacuum hohlraum. Phys. Rev. Lett., 114, 175001(2015).

    [78] D. A.Callahan, C.Weber, O. A.Hurricane, A. B.Zylstra, J.Ralph, A. L.Kritcheret?al.. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Phys. Plasmas, 28, 072706(2021).

    [79] O. A.Hurricane, A. L.Kritcher, C. R.Weber, A. B.Zylstra, C. V.Young, H. F.Robeyet?al.. Design of inertial fusion implosions reaching the burning plasma regime. Nat. Phys, 18, 251-258(2022).

    [80] J. D.Salmonson, B. A.Hammel, D. A.Callahan, D. S.Clark, S. W.Haan, J. D.Lindlet?al.. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas, 18, 051001(2011).

    [81] S. A.MacLaren, N. B.Meezan, K.Widmann, M. B.Schneider, J. H.Hammer, B. E.Yoxallet?al.. The size and structure of the entrance hole in gas-filled hohlraums at the National Ignition Facility. Phys. Plasmas, 22, 122705(2015).

    [82] A. B.Langdon, C. H.Still, E. A.Williams, S. H.Langer, D. A.Callahan, D. E.Hinkel. Analyses of laser-plasma interactions in National Ignition Facility ignition targets. Phys. Plasmas, 15, 056314(2008).

    [83] X.Li, P.Gu, G.Ren, D.Lai, W.Huo, X.-T.He, C.Wu, K.Lan. An initial design of hohlraum driven by a shaped laser pulse. Laser Part. Beams, 28, 421(2010).

    [84] Y.Zhao, K.Lan, D.Lai, X.Li. Initial study and design on ignition ellipraum. Laser Part. Beams, 30, 175(2012).

    [85] D. W.Phillion, S. M.Pollaine. Dynamical compensation of irradiation nonuniformities in a spherical hohlraum illuminated with tetrahedral symmetry by laser beams. Phys. Plasmas, 1, 2963(1994).

    [86] E. L.Lindman, N. D.Delamater, A. A.Hauer, T. J.Murphy, G. R.Magelssen, P.Gobby, J. M.Wallace, J. A.Oertel, K. A.Klare. Inertial confinement fusion with tetrahedral hohlraums at OMEGA. Phys. Rev. Lett., 82, 3807(1999).

    [87] G.Ren, C.Zhai, K.Lan, Y.-H.Chen, J.Liu, Y.Li. Octahedral spherical Hohlraum for Rev. 6 NIF beryllium capsule. Phys. Plasmas, 25, 102701(2018).

    [88] K.Lan, X.Qiao. Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion. Phys. Rev. Lett., 126, 185001(2021).

    [89] S.Jiang, F.Wang, J.Yang, S.Li, S.Liu, Y.Dinget?al.. Recent diagnostic developments at the 100 kJ-level laser facility in China. Matter Radiat. Extremes, 5, 035201(2020).

    [90] Q.Wanget?al.. Development of a gated X-ray imager with multiple views and spectral selectivity for observing plasmas evolution in hohlraums. Rev. Sci. Instrum., 90, 073301(2019).

    [91] H.Du, S.Liu, G.Ren, K.Ren, W.Huo, L.Houet?al.. Direct measurement of x-ray flux for a pre-specified highly-resolved region in hohlraum. Opt. Express, 23, A1072(2015).

    [92] X.Li, F.Chen, T.Xiaoet?al.. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets. Matter Radiat. Extremes, 3, 104(2018).

    [93] D. P.Smitherman, R. E.Chrien, D. C.Wilson, F. J.Swenson, P. A.Bradley, N. M.Hoffmanet?al.. The development and advantages of beryllium capsules for the National Ignition Facility. Phys. Plasmas, 5, 1953(1998).

    [94] O. L.Landen, R. J.Leeper, G. A.Rochau, R. E.Olson. X-ray ablation rates in inertial confinement fusion capsule materials. Phys. Plasmas, 18, 032706(2011).

    [95] E. L.Dewald, A. N.Simakov, J. L.Kline, D. C.Wilson, T. S.Perry, A. B.Zylstra, R. E.Olson, S. A.Yi, G. A.Kyrala, S. H.Bathaet?al.. First beryllium capsule implosions on the National Ignition Facility. Phys. Plasmas, 23, 056310(2016).

    [96] J. D.Hager, J. L.Kline. Aluminum X-ray mass-ablation rate measurements. Matter Radiat. Extremes, 2, 16(2017).

    [97] C.Yu, Y.Liu, K.Lan, J.Liu, Z.Fan, B.Liu. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments. Matter Radiat. Extremes, 2, 3(2017).

    [98] X.Li, X.He, D.Lai, X.Meng, K.Lan, T.Feng. Study on Au + U + Au sandwich Hohlraum wall for ignition targets. Laser Part. Beams, 28, 75(2010).

    [99] L.Guo, Z.Wu, L.Jing, Y.Ding, T.Yi, P.Xing, Z.Li, G.Ren, L.Kuang, S.Liet?al.. Uranium hohlraum with an ultrathin uranium–nitride coating layer for low hard x-ray emission and high radiation temperature. New J. Phys., 17, 113004(2015).

    [100] M. D.Rosen, J. H.Hammer. Analytic expressions for optimal interial-confinement fusion hohlraum wall density and wall loss. Phys. Rev. E, 72, 056403(2005).

    [101] P.Song, K.Lan. Foam Au driven by 4ω–2ω ignition laser pulse for inertial confinement fusion. Phys. Plasmas, 24, 052707(2017).

    [102] Y.-H.Chen, E. M.Campbell, W.Zheng, K.Lan. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light. Phys. Plasmas, 25, 022702(2018).

    [103] G. P.Schurtz, P. D.Nicola?, J.-L. A.Feugeas. A practical non-local model for heat transport in magnetized laser plasmas. Phys. Plasmas, 13, 032701(2006).

    [104] Q. H.Zeng, H.Yong, P. J.Gu, W. Y.Huo, K.Lan. Electron heat conduction under non-Maxwellian distribution in hohlraum simulation. Phys. Plasmas, 19, 012313(2012).

    [105] W.Zheng, B.Qing, X.Qiao, J.Zhang, P.Song, K.Lan. Study on laser-irradiated Au plasmas by detailed configuration accounting atomic physics. Phys. Plasmas, 24, 102706(2017).

    [106] M.Zeman, M.Kucha?ík, J.Limpouch, M.Holec, J.Nikl, S.Weber. Macroscopic laser-plasma interaction under strong non-local transport conditions for coupled matter and radiation. Matter Radiat. Extremes, 3, 110(2018).

    [107] K.Lan, K.Li. Escape of α-particle from hot-spot for inertial confinement fusion. Phys. Plasmas, 26, 122701(2019).

    [108] W. Y.Huo, K.Li. Nonlocal electron heat transport under the non-Maxwellian distribution function. Phys. Plasmas, 27, 062705(2020).

    [109] H.Aluie, F.García-Rubio, J.Sanz, R.Betti. Self-consistent theory of the Darrieus–Landau and Rayleigh–Taylor instabilities with self-generated magnetic fields. Phys. Plasmas, 27, 112715(2020).

    [110] J.Nilsen, D. C.Swift, H. D.Whitley, A. L.Kritcher, M. E.Martin, R. E.Tiptonet?al.. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum. Matter Radiat. Extremes, 5, 018401(2020).

    [111] D.Liu, L.Xia, J.Liu, Y.Cui, L.Ji, X.Zhao, D.Rao, F.Li, W.Feng, Y.Gaoet?al.. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).

    [112] J. F.Myatt, J. P.Palastro, J. G.Shaw, D. H.Froula, H.Wen, R. K.Follett. Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers. Phys. Plasmas, 28, 032103(2021).

    [113] Z. M.Sheng, J.Zhang, S. M.Weng, S.Kawata, X. F.Li, H. H.Ma, P.Gibbon, S. H.Yew. Mitigating parametric instabilities in plasmas by sun-light lasers. Matter Radiat. Extremes, 6, 055902(2021).

    Ke Lan. Dream fusion in octahedral spherical hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(5): 055701
    Download Citation