• Journal of Infrared and Millimeter Waves
  • Vol. 35, Issue 5, 538 (2016)
LI Xing-Wei1、*, BAI Shen-Jian1, and SUN Ji-Xiang2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2016.05.006 Cite this Article
    LI Xing-Wei, BAI Shen-Jian, SUN Ji-Xiang. Numerical study of a dual-band metamaterial absorber in near infrared region based on cavity and electrical resonances[J]. Journal of Infrared and Millimeter Waves, 2016, 35(5): 538 Copy Citation Text show less
    References

    [1] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314: 977-980.

    [2] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett, 2010, 10:2342-2348.

    [3] Liu X, Tyler T, Starr T, et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Phys. Rev. Lett, 2011, 107: 045901-045904.

    [4] Hao J, Zhou L, Qiu M, Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. Phys. Rev. B, 2011, 83:165107-165119.

    [5] Watts C M, Liu X, Padilla W J, Metamaterial electromagnetic wave absorbers[J]. Adv. Mater. 2012, 24:OP98-OP120.

    [6] Wang Y T, Cheng B H, Ho Y Z, et al. Gain-assisted hybrid-superlens hyperlens for nano imaging[J]. Opt. Express, 2012, 20:22953-22960.

    [7] Cheng B H, Lan Y C, Tsai D P, Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light[J]. Opt. Express, 2013, 21:14898-14906.

    [8] Muskens O L, Diedenhofen S L, Weert M H M, et al. Epitaxial growth of aligned semiconductor nanowire metamaterials for photonic applications[J]. Adv. Funct. Mater, 2008,18:1039-1046.

    [9] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys. Rev. Lett, 2008,100:207402-207405.

    [10] Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Appl. Phys. Lett. 2009, 95:241111-241113.

    [11] Hao J, Wang J, Liu X, et al. High performance optical absorber based on a plasmonic metamaterial[J]. Appl. Phys. Lett. 2010,96:251104-251106.

    [12] Zhang N, Zhou P, Cheng D, et al. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacer layers[J]. Opt. Lett. 2013,38:1125-1127.

    [13] Niesler F B P, Gansel J K, Fischbach S, et al. Metamaterial metal-based bolometers[J]. Appl. Phys. Lett. 2012, 100:203508-203511.

    [14] Jaruwongrungsee K, Withayachumnankul W, Wisitsoraat A, et al. Metamaterial-inspired microfluidicbased sensor for chemical discrimination[J]. IEEE Sensors, 2012, 21:01-04.

    [15] Wang Y, Sun T, Paudel T, et al. Metamaterial plasmonic absorber structure for high efficiency amorphous silicon solar cells[J]. Nano Lett. 2012, 12:440-445.

    [16] Cheng D, Xie T, Zhang H, et al. Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum[J]. J. Opt. Soc. Am. B, 2012, 29:1503-1510.

    [17] Lee H M, Wu J C. A wide-angle dual-band infrared perfect absorber based on metal-dielectric-metal split square-ring and square array[J]. J. Phys. D: Appl. Phys. 2012, 45:205101-205106.

    [18] Hendrickson J, Guo J, Zhang B, et al. Wideband perfect light absorber at midwave infrared using multiplexed metal structures[J]. Opt. Lett. 2012, 37:371-373.

    [19] Chen K, Adato R, Altug H, Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6:7998-8006.

    [20] Zhang S, Fan W J, Paniou N C, et al. Experimental Demonstration of Near-infrared Negative-Index Metamaterials[J], Phys. Rev. Lett. 2005. 95:137404-137407.

    [21] Kischkat J, Peters S, Gruska B, et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride[J]. Appl. Opt. 2012, 51:6789 -6798.

    [22] Smith D R, Schult S, Markos P, et al. Determination of effective permittivity and permeability of metamaterials from reflection andtrans- mission coefficients[J], Phys. Rev. B, 2002, 65:195104-195108.

    [23] Ho C P, Pitchappa P, Kropelnicki P, et al. Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications[J]. IEEE J. Sel. Top. Quantum Electron.2014, 20:4900107-4900113.

    [24] Pitchappa P, Ho C P, Kropelnicki P, et al. Dual band complementary metamaterial absorber in near infrared region[J], Journal of Applied Physics, 2014, 115:193109-193115.

    [25] Zhou J, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Opt. Lett. 2006, 31:3620-3622.

    [26] Pang Y, Cheng H, Zhou Y, et al. Analysis and design of wirebased metamaterial absorbers using equivalent circuit approach[J]. J. Appl. Phys. 2013, 113:114902-114908.

    [27] Zhou J, Koschny T, Soukoulis C M, An efficient way to reduce losses of left-handed metamaterials[J]. Opt. Express, 2008, 16:11147-11152.

    [28] Hu C, Zhao Z, Chen X, et al. Realizing near-perfect absorption at visible frequencies[J]. Opt. Express. 2009, 17:11039-11044.

    LI Xing-Wei, BAI Shen-Jian, SUN Ji-Xiang. Numerical study of a dual-band metamaterial absorber in near infrared region based on cavity and electrical resonances[J]. Journal of Infrared and Millimeter Waves, 2016, 35(5): 538
    Download Citation