• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 4, 2240003 (2022)
[in Chinese]1, [in Chinese]1, [in Chinese]2, [in Chinese]3, [in Chinese]3, [in Chinese]4, [in Chinese]1, [in Chinese]1, [in Chinese]1, and [in Chinese]1、*
Author Affiliations
  • 1Department of Biotechnology, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI Peshawar, Pakistan
  • 2Department of Physics, University of Massachusetts, Boston, MA 02125, USA
  • 3Department of Microbiology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University Hayatabad, Peshawar, KP, Pakistan
  • 4Department of Pharmacy, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI, Peshawar, Pakistan
  • show less
    DOI: 10.1142/s179354582240003x Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Photokilling of waterborne-resistant pathogenic bacteria using cobalt-doped zinc oxide doped on reduced graphene oxide nanoparticles[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2240003 Copy Citation Text show less
    References

    [1] M. Oves, M. Arshad, M. S. Khan, A. S. Ahmed, A. Azam, I. M. Ismail, "Anti-microbial activity of cobalt doped zinc oxide nanoparticles: Targeting water borne bacteria," J. Saudi Chem. Soc. 19(5), 581–588 (2015).

    [2] E. López-Jacome, R. Franco-Cendejas, H. Quezada, R. Morales-Espinosa, I. Castillo-Juarez, B. Gonzalez-Pedrajo, A. M. Fernandez-Presas, A. Tovar-García, V. Angarita-Zapata, P. Licona-Limón, "The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches," Curr. Opin. Pharmacol. 48, 48–56 (2019).

    [3] X.-Y. Hu, M. Logue, N. Robinson, "Antimicrobial resistance is a global problem–a UK perspective," Eur. J. Integr. Med. 36, 101136 (2020).

    [4] X. Zhu, A. F. Radovic-Moreno, J. Wu, R. Langer, J. Shi, "Nanomedicine in the management of microbial infection–overview and perspectives," Nano Today 9(4), 478–498 (2014).

    [5] R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, "ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents," J. Colloid Interface Sci. 452, 126–133 (2015).

    [6] A. K. Geim, K. S. Novoselov, The rise of graphene, Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 11–19, World Scientific (2010).

    [7] C. Chen, Z. Gan, K. Zhou, Z. Ma, Y. Liu, Y. Gao, "Catalytic polymerization of N-methylthionine at electrochemically reduced graphene oxide electrodes," Electrochim. Acta 283, 1649–1659 (2018).

    [8] Y. Liu, N. Song, Z. Ma, K. Zhou, Z. Gan, Y. Gao, S. Tang, C. Chen, "Synthesis of a poly (N-methylthionine)/reduced graphene oxide nanocomposite for the detection of hydroquinone," Mater. Chem. Phys. 223, 548–556 (2019).

    [9] K. S. Novoselov, A. Geim, "The rise of graphene," Nat. Mater. 6(3), 183–191 (2007).

    [10] E. Zaitsev, G. Bocharov, P. Chuprov, S. Tkachev, D. Y. Kornilov, S. Gubin, A. Eletskii, E. Kurkina, "Preparation of graphene on copper substrates of various geometries by chemical vapor deposition," Inorganic Mater. 54(12), 1205–1215 (2018).

    [11] X. Zhou, F. Liang, "Application of graphene/graphene oxide in biomedicine and biotechnology," Curr. Med. Chem. 21(7), 855–869 (2014).

    [12] E. Yang, A. B. Alayande, C.-M. Kim, J.-H. Song, I. S. Kim, "Laminar reduced graphene oxide membrane modified with silver nanoparticle-polydopamine for water/ion separation and biofouling resistance enhancement," Desalination 426, 21–31 (2018).

    [13] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, "Supercapacitor devices based on graphene materials," J. Phys. Chem. C 113(30), 13103–13107 (2009).

    [14] J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, B. Yi, "Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries," Phys. Chem. Chem. Phys. 13(34), 15384–15402 (2011).

    [15] X. Yang, Y. Tu, L. Li, S. Shang, X.-M. Tao, "Welldispersed chitosan/graphene oxide nanocomposites," ACS Appl. Mater. Interfaces 2(6), 1707–1713 (2010).

    [16] I. E. Mba, E. I. Nweze, "Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects," World J. Microbiol. Biotechnol. 37(6), 1–30 (2021).

    [17] M. Nadeem, B. H. Abbasi, M. Younas, W. Ahmad, T. Khan, "A review of the green syntheses and antimicrobial applications of gold nanoparticles," Green Chem. Lett. Rev. 10(4), 216–227 (2017).

    [18] M. Nadeem, R. Khan, K. Afridi, A. Nadhman, S. Ullah, S. Faisal, Z. U. Mabood, C. Hano, B. H. Abbasi, "Green synthesis of cerium oxide nanoparticles (CeO(2) NPs) and their antimicrobial applications: A review," Int. J. Nanomed. 15, 5951–5961 (2020).

    [19] M. Nadeem, D. Tungmunnithum, C. Hano, B. H. Abbasi, S. S. Hashmi, W. Ahmad, A. Zahir, "The current trends in the green syntheses of titanium oxide nanoparticles and their applications," Green Chem. Lett. Rev. 11(4), 492–502 (2018).

    [20] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. Aplin, J. Park, X. Bao, Y.-H. Lo, D. Wang, "ZnO nanowire UV photodetectors with high internal gain," Nano Lett. 7(4), 1003–1009 (2007).

    [21] A. Pimentel, J. Rodrigues, P. Duarte, D. Nunes, F. Costa, T. Monteiro, R. Martins, E. Fortunato, "Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: A photocatalytic study," J. Mater. Sci. 50(17), 5777–5787 (2015).

    [22] M. Dhingra, S. Shrivastava, P. S. Kumar, S. Annapoorni, "Polyaniline mediated enhancement in band gap emission of zinc oxide," Compos. B. Eng. 45(1), 1515–1520 (2013).

    [23] R. Karthik, S. Thambidurai, "Synthesis of cobalt doped ZnO/reduced graphene oxide nanorods as active material for heavy metal ions sensor and antibacterial activity," J. Alloys Compd. 715, 254–265 (2017).

    [24] A. Nadhman, S. Nazir, M. I. Khan, A. Ayub, B. Muhammad, M. Khan, D. F. Shams, M. Yasinzai, "Visible-light-responsive ZnCuO nanoparticles: Benign photodynamic killers of infectious protozoans," Int. J. Nanomed. 10, 6891–6903 (2015).

    [25] G. Iqbal, S. Faisal, S. Khan, D. F. Shams, A. Nadhman, "Photo-inactivation and efflux pump inhibition of methicillin resistant Staphylococcus aureus using thiolated cobalt doped ZnO nanoparticles," J. Photochem. Photobiol. B: Biology 192, 141–146 (2019).

    [26] S. Yougbare, C. Mutalik, D. I. Krisnawati, H. Kristanto, A. Jazidie, M. Nuh, T.-M. Cheng, T.-R. Kuo, "Nanomaterials for the photothermal killing of bacteria," Nanomaterials 10(6), 1123 (2020).

    [27] C. Mutalik, G. Okoro, D. I. Krisnawati, A. Jazidie, E. Q. Rahmawati, D. Rahayu, W.-T. Hsu, T.-R. Kuo, "Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities," J. Colloid Interface Sci. 607, 1825–1835 (2022).

    [28] C. Mutalik, D. I. Krisnawati, S. B. Patil, M. Khafid, D. S. Atmojo, P. Santoso, S.-C. Lu, D.-Y. Wang, T.-R. Kuo, "Phase-dependent MoS2 nanoflowers for light-driven antibacterial application," ACS Sustain. Chem. Eng. 9(23), 7904–7912 (2021).

    [29] S. Yougbare, H.-L. Chou, C.-H. Yang, D. I. Krisnawati, A. Jazidie, M. Nuh, T.-R. Kuo, "Facet-dependent gold nanocrystals for effective photothermal killing of bacteria," J. Hazardous Mater. 407, 124617 (2021).

    [30] X. Zeng, G. Wang, Y. Liu, X. Zhang, "Graphenebased antimicrobial nanomaterials: Rational design and applications for water disinfection and microbial control," Environ. Sci. Nano 4(12), 2248–2266 (2017).

    [31] N. Sharma, V. Sharma, R. Vyas, M. Kumari, A. Kaushal, R. Gupta, S. Sharma, K. Sachdev, "A new sustainable green protocol for production of reduced graphene oxide and its gas sensing properties," J. Sci. Adv. Mater. Dev. 4(3), 473–482 (2019).

    [32] Y. Hong, Z. Wang, X. Jin, "Sulfuric acid intercalated graphite oxide for graphene preparation," Sci. Rep. 3(1), 1–6 (2013).

    [33] B. Paulchamy, G. Arthi, B. Lignesh, "A simple approach to stepwise synthesis of graphene oxide nanomaterial," J. Nanomed. Nanotechnol. 6(1), 1(2015).

    [34] G. Santamaría-Juarez, E. Gómez-Barojas, E. Quiroga-Gonzalez, E. Sanchez-Mora, M. Quintana-Ruiz, J. D. Santamaría-Juarez, "Safer modified Hummers' method for the synthesis of graphene oxide with high quality and high yield," Mater. Res. Exp. 6 (12), 125631 (2020).

    [35] Y. Hou, S. Lv, L. Liu, X. Liu, "High-quality preparation of graphene oxide via the Hummers' method: Understanding the roles of the intercalator, oxidant, and graphite particle size," Ceram. Int. 46(2), 2392–2402 (2020).

    [36] V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, A. Buasri, "Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods," Adv. Mater. Sci. Eng. 2013, 923403 (2013).

    [37] S. Khan, S. Faisal, D. F. Shams, M. Zia, A. Nadhman, "Photo-inactivation of bacteria in hospital effluent via thiolated iron-doped nanoceria," IET Nanobiotechnol. 13(8), 875–879 (2019).

    [38] A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, S. Minaian, "Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli," Nanomed. Nanotechnol. Biol. Med. 3(2), 168–171 (2007).

    [39] L. Shahriary, A. A. Athawale, "Graphene oxide synthesized by using modified hummers approach," Int. J. Renew. Energy Environ. Eng. 2(1), 58–63 (2014).

    [40] A. Nadhman, S. Nazir, M. I. Khan, A. Ayub, B. Muhammad, M. Khan, D. F. Shams, M. Yasinzai, "Visible-light-responsive ZnCuO nanoparticles: Benign photodynamic killers of infectious protozoans," Int. J. Nanomed. 10, 6891 (2015).

    [41] H. S. Al-Salman, M. Abdullah, "Fabrication and characterization of undoped and cobalt-doped ZnO based UV photodetector prepared by RFsputtering," J. Mater. Sci. Technol. 29(12), 1139–1145 (2013).

    [42] M. Price, J. J. Reiners, A. M. Santiago, D. Kessel, "Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy," Photochem. Photobiol. 85(5), 1177–1181 (2009).

    [43] E. Aldred, C. Buck, K. Vall, Chapter 7-Free radicals, Pharmacology, Churchill Livingstone, London, UK (2009).

    [44] Y. Li, W. Zhang, J. Niu, Y. Chen, "Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles," ACS Nano 6(6), 5164–5173 (2012).

    [45] A. Nadhman, M. I. Khan, S. Nazir, M. Khan, G. Shahnaz, A. Raza, D. F. Shams, M. Yasinzai, "Annihilation of Leishmania by daylight responsive ZnO nanoparticles: A temporal relationship of reactive oxygen species-induced lipid and protein oxidation," Int. J. Nanomed. 11, 2451–2461 (2016).

    [46] A. Nadhman, M. Sirajuddin, S. Nazir, M. Yasinzai, "Photo-induced Leishmania DNA degradation by silver-doped zinc oxide nanoparticle: Anin-vitro approach," IET Nanobiotechnol. 10(3), 129–133 (2016).

    [47] P. Sivakumar, M. Lee, Y.-S. Kim, M. S. Shim, "Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles," J. Mater. Chem. B 6(30), 4852–4871 (2018).

    [48] W. Wang, X. Cheng, J. Liao, Z. Lin, L. Chen, D. Liu, T. Zhang, L. Li, Y. Lu, H. Xia, "Synergistic photothermal and photodynamic therapy for effective implant-related bacterial infection elimination and biofilm disruption using Cu9S8 nanoparticles," ACS Biomater. Sci. Eng. 5(11), 6243–6253 (2019).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Photokilling of waterborne-resistant pathogenic bacteria using cobalt-doped zinc oxide doped on reduced graphene oxide nanoparticles[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2240003
    Download Citation