• Chinese Optics Letters
  • Vol. 21, Issue 6, 060603 (2023)
Exian Liu1 and Jianjun Liu2、*
Author Affiliations
  • 1College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
  • 2Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • show less
    DOI: 10.3788/COL202321.060603 Cite this Article Set citation alerts
    Exian Liu, Jianjun Liu. Quasiperiodic photonic crystal fiber [Invited][J]. Chinese Optics Letters, 2023, 21(6): 060603 Copy Citation Text show less
    References

    [1] D. Shechtman, I. Blech, D. Gratias, J. W. Cahn. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 53, 1951(1984).

    [2] D. Levine, P. J. Steinhardt. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett., 53, 2477(1984).

    [3] M. Duneau, A. Katz. Quasiperiodic patterns. Phys. Rev. Lett., 54, 2688(1985).

    [4] A. L. Mackay. Quasi-crystals and amorphous materials. J. Non-Cryst. Solids, 98, 55(1987).

    [5] A. N. Poddubny, E. L. Ivchenko. Photonic quasicrystalline and aperiodic structures. Physica E Low Dimens. Syst. Nanostruct., 42, 1871(2010).

    [6] P. Stampfli. A dodecagonal quasi-periodic lattice in two dimensions. Helv. Phys. Act., 59, 1260(1986).

    [7] H. Chen, D. X. Li, K. H. Kuo. New type of two-dimensional quasicrystal with twelvefold rotational symmetry. Phys. Rev. Lett., 60, 1645(1988).

    [8] D. Levine, P. J. Steinhardt. Quasicrystals. I. Definition and structure. Phys. Rev. B, 34, 596(1986).

    [9] M. Kohmoto, B. Sutherland, K. Iguchi. Localization of optics: quasiperiodic media. Phys. Rev. Lett., 58, 2436(1987).

    [10] L. Guidoni, C. Triché, P. Verkerk, G. Grynberg. Quasiperiodic optical lattices. Phys. Rev. Lett., 79, 3363(1997).

    [11] L. Voigt, M. Kubus, K. S. Pedersen. Chemical engineering of quasicrystal approximants in lanthanide-based coordination solids. Nat. Commun., 11, 1(2020).

    [12] A. Szabó, U. Schneider. Mixed spectra and partially extended states in a two-dimensional quasiperiodic model. Phys. Rev. B, 101, 014205(2020).

    [13] M. Sbroscia, K. Viebahn, E. Carter, J.-C. Yu, A. Gaunt, U. Schneider. Observing localization in a 2D quasicrystalline optical lattice. Phys. Rev. Lett., 125, 200604(2020).

    [14] U. Agrawal, S. Gopalakrishnan, R. Vasseur. Universality and quantum criticality in quasiperiodic spin chains. Nat. Commun., 11, 2225(2020).

    [15] E. Cherkaev, F. G. Vasquez, C. Mauck, M. Prisbrey, B. Raeymaekers. Wave-driven assembly of quasiperiodic patterns of particles. Phys. Rev. Lett., 126, 145501(2021).

    [16] Y. S. Chan, C. T. Chan, Z. Y. Liu. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett., 80, 956(1998).

    [17] M. W. C. Dharma-Wardana, A. H. MacDonald, D. J. Lockwood, J.-M. Baribeau, D. C. Houghton. Raman scattering in Fibonacci superlattices. Phys. Rev. Lett., 58, 1761(1987).

    [18] Y.-Y. Zhu, N.-B. Ming. Second-harmonic generation in a Fibonacci optical superlattice and the dispersive effect of the refractive index. Phys. Rev. B, 42, 3676(1990).

    [19] C. Yue, W. Tan, J. Liu. Photonic band gap properties of one-dimensional Thue–Morse all-dielectric photonic quasicrystal. Superlattices Microstruct., 117, 252(2018).

    [20] W. Tan, E. Liu, B. Yan, J. Xie, R. Ge, D. Tang, J. Liu, S. Wen. Subwavelength focusing of a cylindrically symmetric plano-concave lens based on a one-dimensional Thue–Morse photonic quasicrystal. Appl. Phys. Express, 11, 092002(2018).

    [21] B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, J. W. Fleischer. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature, 440, 1166(2006).

    [22] C. Zhang, Z. Jiang, W. Tan, R. Ge, J. Liu. Non-near-field sub-diffraction focusing in the visible wavelength range by a Fibonacci subwavelength circular grating. J. Opt. Soc. Am. A, 35, 1701(2018).

    [23] M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, M. C. Netti. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature, 404, 740(2000).

    [24] C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, B. Sun. Band gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett., 75, 1848(1999).

    [25] C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang. Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region. Phys. Rev. B, 61, 10762(2000).

    [26] M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice. Phys. Rev. Lett., 92, 123906(2004).

    [27] Z. Feng, X. Zhang, Y. Wang, Z. Y. Li, B. Cheng, D. Z. Zhang. Negative refraction and imaging using 12-fold-symmetry quasicrystals. Phys. Rev. Lett., 94, 247402(2005).

    [28] W. Zhang, W. Tan, Q. Yang, T. Zhou, J. Liu. Subwavelength focusing in visible light band by a Fibonacci photonic quasi-crystal plano-concave lens. J. Opt. Soc. Am. B, 35, 2364(2018).

    [29] X. Zhang, Z. Li, B. Cheng, D. Z. Zhang. Non-near-field focus and imaging of an unpolarized electromagnetic wave through high-symmetry quasicrystals. Opt. Express, 15, 1292(2007).

    [30] L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, M. Segev. Disorder-enhanced transport in photonic quasicrystals. Science, 332, 1541(2011).

    [31] C. Bauer, G. Kobiela, H. Giessen. Optical properties of two-dimensional quasicrystalline plasmonic arrays. Phys. Rev. B, 84, 193104(2011).

    [32] J. Liu, Z. Fan, H. Xiao, W. Zhang, C. Guan, L. Yuan. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals. Appl. Opt., 50, 4868(2011).

    [33] J. Liu, Z. Fan, M. Kuang, G. He, C. Guan, L. Yuan. Relative permittivity dependence of photonic band gaps for unit cells of the basic structural unit of two-dimensional decagonal photonic quasicrystals. Opt. Commun., 288, 52(2013).

    [34] J. Liu, Z. Fan, H. Hu, M. Yang, C. Guan, L. Yuan, H. Guo, X. Zhang. Wavelength dependence of focusing properties of two-dimensional photonic quasicrystal flat lens. Opt. Lett., 37, 1730(2012).

    [35] Z. Fan, J. Liu, S. Chen, H. Chang, C. Guan, L. Yuan. Comparative study of photonic band gaps of germanium-based two-dimensional triangular-lattice and square-lattice and decagonal quasi-periodic photonic crystals. Microelectron. Eng., 96, 11(2012).

    [36] M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, Y. Silberberg. Observation of topological phase transitions in photonic quasicrystals. Phys. Rev. Lett., 110, 076403(2013).

    [37] Z. V. Vardeny, A. Nahata, A. Agrawal. Optics of photonic quasicrystals. Nat. Photonics, 7, 177(2013).

    [38] J. J. Liu, H. L. Hu, W. Zhang, Z. G. Fan. Scatterer radius dependence of focusing properties in two-dimensional photonic quasicrystal flat lens. Photonics Nanostructures-Fundam. Appl., 12, 138(2014).

    [39] J. J. Liu, E. X. Liu, T. H. Zhang, Z. G. Fan. Thickness dependence of two-dimensional photonic quasicrystal lens imaging characteristics. Solid State Commun., 201, 68(2015).

    [40] J. Liu, E. Liu, Z. Fan, X. Zhang. Dielectric refractive index dependence of the focusing properties of a dielectric-cylinder-type decagonal photonic quasicrystal flat lens and its photon localization. Appl. Phys. Express, 8, 112003(2015).

    [41] J. Liu, E. Liu, Z. Fan. Width dependence of two-dimensional photonic quasicrystal flat lens imaging characteristics. J. Mod. Opt., 63, 692(2016).

    [42] J. Liu, W. Tan, E. Liu, H. Hu, Z. Fan, T. Zhang, X. Zhang. Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms. J. Opt. Soc. Am. A, 33, 978(2016).

    [43] B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, J. Liu. Generation of terahertz hollow beams by a photonic quasi-crystal flat lens. Appl. Phys. Express, 9, 062003(2016).

    [44] Y.-F. Zhao, Z.-M. Wang, Z.-J. Jiang, C.-X. Yue, X. Chen, J.-Z. Wang, J.-J. Liu. Add-drop filter with compound structures of photonic crystal and photonic quasicrystal. J. Infrared Millim. Waves, 36, 342(2017).

    [45] J. Liu, Z. Fan. Size limits for focusing of two-dimensional photonic quasicrystal lenses. IEEE Photon. Technol. Lett., 30, 1001(2018).

    [46] R. Ge, J. Xie, B. Yan, E. Liu, W. Tan, J. Liu. Refractive index sensor with high sensitivity based on circular photonic crystal. J. Opt. Soc. Am. A, 35, 992(2018).

    [47] J. Ren, X. H. Sun, S. Wang. A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal. Opt. Laser Technol., 101, 42(2018).

    [48] K. Viebahn, M. Sbroscia, E. Carter, J.-C. Yu, U. Schneider. Matter-wave diffraction from a quasicrystalline optical lattice. Phys. Rev. Lett., 122, 110404(2019).

    [49] B. Yan, J. Xie, E. Liu, Y. Peng, R. Ge, J. Liu, S. Wen. Topological edge state in the two-dimensional Stampfli-triangle photonic crystals. Phys. Rev. Appl., 12, 044004(2019).

    [50] A. Shi, R. Ge, J. Liu. Refractive index sensor based on photonic quasi-crystal with concentric ring microcavity. Superlattices Microstruct., 133, 106198(2019).

    [51] Y. Tang, J. Deng, K. F. Li, M. Jin, J. Ng, G. Li. Quasicrystal photonic metasurfaces for radiation controlling of second harmonic generation. Adv. Mater., 31, 1901188(2019).

    [52] X. Y. Xi, X. H. Sun. Photonic bandgap properties of two dimensional photonic quasicrystals with multiple complex structures. Superlattices Microstruct., 129, 247(2019).

    [53] Z. Guo, B. Yan, J. Liu. Straight lined and circular interface states in sunflower-type photonic crystals. J. Opt., 22, 035002(2020).

    [54] H. Zhao, J. Xie, J. Liu. An approximate theoretical explanation for super-resolution imaging of two-dimensional photonic quasi-crystal flat lens. Appl. Phys. Express, 13, 022007(2020).

    [55] T. Hou, R. Ge, W. Tan, J. Liu. One-way rotating state of multi-periodicity frequency bands in circular photonic crystal. J. Phys. D, 53, 075104(2020).

    [56] W. Jin, M. Song, X. Yue, Y. Gao. Optical induced area-controllable two-dimensional eight-fold symmetric photonic quasicrystal microstructures. Opt. Mater., 100, 109719(2020).

    [57] A. D. Sinelnik, I. I. Shishkin, X. Yu, K. B. Samusev, P. A. Belov, M. F. Limonov, P. Ginzburg, M. V. Rybin. Experimental Observation of intrinsic light localization in photonic icosahedral quasicrystals. Adv. Opt. Mater., 8, 2001170(2020).

    [58] T. Liu, H. Guo, Y. Pu, S. Longhi. Generalized Aubry-André self-duality and mobility edges in non-Hermitian quasiperiodic lattices. Phys. Rev. B, 102, 024205(2020).

    [59] C.-B. Hua, R. Chen, B. Zhou, D.-H. Xu. Higher-order topological insulator in a dodecagonal quasicrystal. Phys. Rev. B, 102, 241102(R)(2020).

    [60] S. Biasco, H. E. Beere, D. A. Ritchie, L. Li, A. G. Davies. Frequency-tunable continuous-wave random lasers at terahertz frequencies. Light Sci. Appl., 8, 43(2019).

    [61] H. Yao, T. Giamarchi, L. Sanchez-Palencia. Lieb-Liniger bosons in a shallow quasiperiodic potential: bose glass phase and fractal mott lobes. Phys. Rev. Lett., 125, 60401(2020).

    [62] A. Ramakrishnan, K. K. Kesavan, S. Chavhan, M. R. Nagar, J.-H. Jou, S.-W. Chen, H.-W. Hsiao, J.-M. Zuo, L. Y. Hung. Liquid exfoliation of decagonal quasicrystals and its light out-coupling performance in organic light-emitting devices. Adv. Photonics Res., 1, 2000042(2020).

    [63] R. Gautier, H. Yao, L. Sanchez-Palencia. Strongly interacting bosons in a two-dimensional quasicrystal lattice. Phys. Rev. Lett., 126, 110401(2021).

    [64] T. M. Mercier, T. Rahman, C. Krishnan, E. Khorani, P. J. Shaw, M. E. Pollard, S. A. Boden, P. G. Lagoudakis, M. D. B. Charlton. High symmetry nano-photonic quasi-crystals providing novel light management in silicon solar cells. Nano Energy, 84, 105874(2021).

    [65] J. C. Knight. Photonic crystal fibres. Nature, 424, 847(2003).

    [66] P. Russell. Photonic crystal fibers. Science, 299, 358(2003).

    [67] J. C. Knight, T. A. Birks, P. St.J. Russell, D. M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding: errata. Opt. Lett., 22, 484(1997).

    [68] S. Kim, C.-S. Kee, J. Lee. Novel optical properties of six-fold symmetric photonic quasicrystal fibers. Opt. Express, 15, 13221(2007).

    [69] S. Kim, C.-S. Kee. Dispersion properties of dual-core photonic-quasicrystal fiber. Opt. Express, 17, 15885(2009).

    [70] H. Zhao, R. P. Zaccaria, P. Verma, J. Song, H. Sun. Validity of the V parameter for photonic quasi-crystal fibers. Opt. Lett., 35, 1064(2010).

    [71] W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, J. Liu. Dodecagonal photonic quasi-crystal fiber with high birefringence. J. Opt. Soc. Am. A, 33, 2108(2016).

    [72] X. Sun, D. J. J. Hu. Air guiding with photonic quasi-crystal fiber. IEEE Photon. Technol. Lett., 22, 607(2010).

    [73] S. Sivabalan, J. P. Raina. High normal dispersion and large mode area photonic quasi-crystal fiber stretcher. IEEE Photon. Technol. Lett., 23, 1139(2011).

    [74] F. Sircilli, M. A. R. Franco, V. A. Serrão. Dispersion properties of microstructured optical fiber with 12-fold quasicrystal lattice of holes. EUROCON 2007 - The International Conference on “Computer as a Tool”, 1263(2007).

    [75] S. Sivabalan, J. P. Raina. Large pitch photonic quasi-crystal fiber amplifier. IEEE Photon. J., 4, 943(2012).

    [76] W. Su, S. Lou, H. Zou, B. Han. Design of a highly nonlinear twin bow-tie polymer photonic quasi-crystal fiber with high birefringence. Infrared Phys. Technol., 63, 62(2014).

    [77] S. Matloub, S. M. Hosseini, A. Rostami. Analysis and optimization of a dual-core dispersion compensation fiber based on a 12-fold photonic quasicrystal structure. Appl. Opt., 53, 8366(2014).

    [78] W. Su, S. Lou, H. Zou, B. Han. A highly nonlinear photonic quasi-crystal fiber with low confinement loss and flattened dispersion. Opt. Fiber Technol., 20, 473(2014).

    [79] V. Ferrando, Á. Coves, P. Ándres, J. A. Monsoriu. Guiding properties of a photonic quasi-crystal fiber based on the Thue-Morse sequence. IEEE Photon. Technol. Lett., 27, 1903(2015).

    [80] M. S. Aruna Gandhi, S. Sivabalan, P. Ramesh Babu, K. Nakkeeran, K. Senthilnathan. Design of a photonic quasi-crystal fiber for the generation of few cycle laser pulses. Infrared Phys. Technol., 68, 69(2015).

    [81] M. S. A. Gandhi, S. Sivabalan, P. R. Babu, K. Senthilnathan. Designing a biosensor using a photonic quasi-crystal fiber. IEEE Sens. J., 16, 2425(2016).

    [82] M. Valliammai, S. Sivabalan. Wide-band supercontinuum generation in mid-IR using polarization maintaining chalcogenide photonic quasi-crystal fiber. Appl. Opt., 56, 4797(2017).

    [83] T. Zhao, Z. Lian, T. Benson, X. Wang, W. Zhang, S. Lou. Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation. Opt. Mater., 73, 343(2017).

    [84] S. Chu, K. Nakkeeran, A. M. Abobaker, S. S. Aphale, P. R. Babu, K. Senthilnathan. Design and analysis of surface-plasmon-resonance-based photonic quasi-crystal fiber biosensor for high-refractive-index liquid analytes. IEEE J. Sel. Top. Quantum Electron., 25, 6900309(2019).

    [85] E. Liu, B. Yan, W. Tan, J. Xie, R. Ge, J. Liu. Guiding characteristics of sunflower-type fiber. Superlattices Microstruct., 115, 123(2018).

    [86] E. Liu, W. Tan, B. Yan, J. Xie, R. Ge, J. Liu. Broadband ultra-flattened dispersion, ultra-low confinement loss and large effective mode area in an octagonal photonic quasi-crystal fiber. J. Opt. Soc. Am. A, 35, 431(2018).

    [87] B. Yan, A. Wang, E. Liu, W. Tan, J. Xie, R. Ge, J. Liu. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber. J. Phys. D, 51, 155105(2018).

    [88] A. Tandjè, J. Yammine, M. Dossou, G. Bouwmans, K. Baudelle, A. Vianou, E. R. Andresen, L. Bigot. Ring-core photonic crystal fiber for propagation of OAM modes. Opt. Lett., 44, 1611(2019).

    [89] Q. Liu, B. Yan, J. Liu. U-shaped photonic quasi-crystal fiber sensor with high sensitivity based on surface plasmon resonance. Appl. Phys. Express, 12, 052014(2019).

    [90] C. Li, B. Yan, J. Liu. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance. J. Opt. Soc. Am. A, 36, 1663(2019).

    [91] J. Han, E. Liu, J. Liu. Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss. J. Opt. Soc. Am. A, 36, 533(2019).

    [92] E. Liu, S. Liang, J. Liu. Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber. Superlattices Microstruct., 130, 61(2019).

    [93] M. F. Azman, W. R. Wong, Mhd. H. Mhd. Abd. Cader, R. A. Aoni, G. A. Mahdiraji, F. R. Mahamd Adikan. Twin-core sunflower-type photonic quasicrystal fibers incorporated gold, silver, and copper microwire: an ultrashort and broad bandwidth polarization splitter. Opt. Quantum Electron., 51, 164(2019).

    [94] Z. Huo, E. Liu, J. Liu. Hollow-core photonic quasicrystal fiber with high birefringence and ultra-low nonlinearity. Chin. Opt. Lett., 18, 030603(2020).

    [95] E. Liu, W. Tan, B. Yan, J. Xie, R. Ge, J. Liu. Robust transmission of orbital angular momentum mode based on a dual-cladding photonic quasi-crystal fiber. J. Phys. D, 52, 325110(2019).

    [96] Q. Liu, Y. Jiang, C.-J. Hu, W.-S. Lu, Y.-D. Sun, C. Liu, J.-W. Lv, J. Zhao, S.-N. Tai, Z. Yi, P. K. Chu. High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide. Chin. Opt., 15, 101(2022).

    [97] M. Kim, S. Kim. Photonic quasi-crystal fiber for orbital angular momentum modes with ultra-flat dispersion. Curr. Opt. Photonics, 3, 298(2019).

    [98] W. Wei, Z.-M. Zhang, L.-Q. Tang, L. Ding, W.-D. Fan, Y.-G. Li. Transmission characteristics of vortex beams in a sixfold photonic quasi-crystal fiber. Acta Phys. Sin., 68, 114209(2019).

    [99] J. P. da Silva, E. R. M. Dantas. Modal analysis of a photonic quasicrystal fiber doped with germanium. SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), 1(2013).

    [100] N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, K. P. Hansen. Modal cutoff and the V parameter in photonic crystal fibers. Opt. Lett., 28, 1879(2003).

    [101] F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, S. Selleri. Single-mode regime of square-lattice photonic crystal fibers. J. Opt. Soc. Am. A, 22, 1655(2005).

    [102] H. Zhao, R. Proietti Zaccaria, P. Verma, J. Song, H. Sun. Single-mode operation regime for 12-fold index-guiding quasicrystal optical fibers. Appl. Phys. B Lasers Opt., 100, 499(2010).

    [103] W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, P. St.J. Russell. Very high numerical aperture fibers. IEEE Photon. Technol. Lett., 16, 843(2004).

    [104] B. K. Paul, S. Chakma, M. A. Khalek, K. Ahmed. Silicon nano crystal filled ellipse core based quasi photonic crystal fiber with birefringence and very high nonlinearity. Chin. J. Phys., 56, 2782(2018).

    [105] B. K. Paul, K. Ahmed, V. Dhasarathan, T. K. Nguyen. Oligoporous-core quasi cladding photonic crystal fiber based micro-sensor for alcohol detection. Phys. B Condens. Matter, 584, 412104(2020).

    [106] Y. M. Wang, W. R. Xue, W. M. Zhang. Dispersion properties of photonic quasicrystal fiber with an air hole varying cladding. Act. Sin. Quant. Opt., 29, 1644(2009).

    [107] Y. M. Wang, W. R. Xue, W. M. Zhang. Dispersion properties of modified octagon photonic quasicrystal fiber. Act. Opt. Sin., 15, 58(2009).

    [108] Z. Q. Li, L. Y. Niu, C. L. Bai, R. Hao, X. Zhang. Dispersion property of photonic quasicrystal fibers. Chin. J. Lumin., 34, 494(2013).

    [109] Y. S. Lee, C. G. Lee, S. Kim. Annular core photonic quasi-crystal fiber with wideband nearly zero ultra-flat dispersion, low confinement loss and high nonlinearity. Optik, 157, 141(2018).

    [110] Y. H. Li, W. De Fan, Q. Q. Sheng. A novel photonic quasicrystal fiber with broadband large negative dispersion. Chin. Phys. Lett., 27, 114211(2010).

    [111] S. Rajalingam, Z. C. Alex. Five-fold symmetric photonic quasi-crystal fiber with high negative dispersion. Res. J. Appl. Sci. Eng. Technol., 9, 786(2015).

    [112] L.-G. Li, L.-S. Yan, G.-Y. Feng, W. Pan, B. Luo, A. Yi, R.-L. Zhu. Distortionless large-ratio stretcher for ultra-short pulses using photonic crystal fiber. Opt. Express, 18, 12341(2010).

    [113] W. Su, S. Lou, H. Zou, B. Han. Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core. Infrared Phys. Technol., 66, 97(2014).

    [114] H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, J. Liu. Photonic quasi-crystal fiber with high birefringence. Opt. Eng., 55, 036101(2016).

    [115] W. Su, S.-Q. Lou, H. Zou, B. L. Han. Highly birefringent ZrF4-BaF2-LaF3-AlF3-NaF photonic quasi-crystal fiber with twin grapefruits holes. Acta Phys. Sin., 63, 144202(2014).

    [116] W.-Y. Liao, W.-D. Fan, Y. Li, J. Chen, F.-H. Bu, H.-P. Li, X.-Y. Wang, D.-M. Huang. Investigation of a novel all-solid large-mode-area photonic quasi-crystal fiber. Acta Phys. Sin., 63, 034206(2014).

    [117] S. Maheswaran, B. K. Paul, M. A. Khalek, S. Chakma, K. Ahmed, M. S. Mani Rajan. Design of tellurite glass based quasi photonic crystal fiber with high nonlinearity. Optik, 181, 185(2019).

    [118] B. K. Paul, M. Abdul Khalek, S. Chakma, K. Ahmed. Chalcogenide embedded quasi photonic crystal fiber for nonlinear optical applications. Ceram. Int., 44, 18955(2018).

    [119] I. S. Amiri, M. A. Khalek, S. Chakma, B. K. Paul, K. Ahmed, V. Dhasarathan, M. S. Mani Rajan. Design of Ge20Sb15Se65 embedded rectangular slotted quasi photonic crystal fiber for higher nonlinearity applications. Optik, 184, 63(2019).

    [120] H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, X. Zhang. A new type circular photonic crystal fiber for orbital angular momentum mode transmission. IEEE Photon. Technol. Lett., 28, 1426(2016).

    [121] Z.-A. Hu, Y.-Q. Huang, A.-P. Luo, H. Cui, Z.-C. Luo, W.-C. Xu. Photonic crystal fiber for supporting 26 orbital angular momentum modes. Opt. Express, 24, 17285(2016).

    [122] E. Liu, B. Yan, J. Xie, Y. Peng, F. Gao, J. Liu. Dispersion compensation for orbital angular momentum mode based on circular photonic crystal fiber. J. Phys. D. Appl. Phys., 54, 435104(2021).

    [123] A. Rjeb, H. Fathallah, S. Chebaane, M. Machhout. Design of novel circular lattice photonic crystal fiber suitable for transporting 48 OAM modes. Optoelectron. Lett., 17, 501(2021).

    [124] Q. Liu, S. Tai, W. Lu, J. Sun, T. Lv, C. Liu, Y. Sun, J. Lv, W. Liu, T. Sun. Design of pure silica-based photonic crystal fiber for supporting 114 OAM modes transmission. J. Opt., 23, 095701(2021).

    [125] T. Wu, Y. Shao, Y. Wang, S. Cao, W. Cao, F. Zhang, C. Liao, J. He, Y. Huang, M. Hou, Y. Wang. Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express, 25, 20313(2017).

    [126] S. Revathi, S. R. Inabathini, J. Pal. Pressure and temperature sensor based on a dual core photonicquasi-crystal fiber. Optik, 126, 3395(2015).

    [127] M. S. Aruna Gandhi, Y. Zhao, H. Y. Fu, Q. Li. A highly versatile porous core photonic quasicrystal fiber based refractive index terahertz sensor. Sensors, 22, 3469(2022).

    [128] Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, T. Sun, P. K. Chu. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film. Opt. Mater., 102, 109800(2020).

    [129] Y. Sun, H. Mu, J. Sun, Q. Liu, C. Liu, W. Liu, J. Zhao, J. Lv, T. Sun, P. K. Chu. Investigation of a high-sensitivity surface plasmon resonance sensor based on the eccentric core quasi D-shape photonic quasi-crystal fiber. J. Mod. Opt., 68, 555(2021).

    [130] Q. Liu, J. Zhao, Y. Sun, W. Liu, C. Liu, J. Lv, T. Lv, Y. Jiang, B. Li, F. Wang, T. Sun, P. K. Chu. High-sensitivity methane sensor composed of photonic quasi-crystal fiber based on surface plasmon resonance. J. Opt. Soc. Am. A, 38, 1438(2021).

    [131] E. Liu, B. Yan, H. Zhou, Y. Liu, G. Liu, J. Liu. OAM mode-excited surface plasmon resonance for refractive index sensing based on a photonic quasi-crystal fiber. J. Opt. Soc. Am. B, 38, F16(2021).

    [132] A. Medjouri, L. M. Simohamed, O. Ziane, A. Boudrioua, Z. Becer. Design of a circular photonic crystal fiber with flattened chromatic dispersion using a defected core and selectively reduced air holes: application to supercontinuum generation at 1.55 µm. Photonics Nanostructures-Fundam. Appl., 16, 43(2015).

    [133] G. Dhanu Krishna, G. Prasannan, S. K. Sudheer, V. P. Mahadevan Pillai. Analysis of zero dispersion shift and supercontinuum generation at near IR in circular photonic crystal fibers. Optik, 145, 599(2017).

    [134] R. Ahmad, M. Komanec, S. Zvanovec. Circular lattice photonic crystal fiber for mid-IR supercontinuum generation. IEEE Photon. Technol. Lett., 28, 2736(2016).

    [135] A. Medjouri, D. Abed. Mid-infrared broadband ultraflat-top supercontinuum generation in dispersion engineered Ge-Sb-Se chalcogenide photonic crystal fiber. Opt. Mater., 97, 109391(2019).

    [136] P. Zhang, J. Zhang, P. Yang, S. Dai, X. Wang, W. Zhang. Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Opt. Fiber Technol., 26, 176(2015).

    [137] V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St.J. Russell, F. G. Omenetto, A. J. Taylor. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express, 10, 1520(2002).

    [138] J. Livage. Sol-gel processes. Curr. Opin. Solid State Mater. Sci., 2, 132(1997).

    [139] R. T. Bise, D. J. Trevor. Sol-gel derived microstructured fiber: fabrication and characterization. Optical Fiber Communication Conference, OWL6(2005).

    [140] H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, M. Bouazaoui. Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. Express, 20, 29751(2012).

    [141] A. Bertoncini, C. Liberale. 3D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices. Optica, 7, 1487(2020).

    [142] Y. Wen, I. Chremmos, Y. Chen, G. Zhu, J. Zhang, J. Zhu, Y. Zhang, J. Liu, S. Yu. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems. Optica, 7, 254(2020).

    [143] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit. Photonic Floquet topological insulators. Nature, 496, 196(2013).

    [144] D. Leykam, M. C. Rechtsman, Y. D. Chong. Anomalous topological phases and unpaired Dirac cones in photonic Floquet topological insulators. Phys. Rev. Lett., 117, 013902(2016).

    [145] Z. Yang, E. Lustig, Y. Lumer, M. Segev. Photonic Floquet topological insulators in a fractal lattice. Light Sci. Appl., 9, 128(2020).

    [146] M. A. Bandres, M. C. Rechtsman, M. Segev. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X, 6, 011016(2016).

    [147] M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus, Y. Silberberg. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B, 91, 064201(2015).

    [148] Z. Che, Y. Zhang, W. Liu, M. Zhao, J. Wang, W. Zhang, F. Guan, X. Liu, W. Liu, L. Shi, J. Zi. Polarization singularities of photonic quasicrystals in momentum space. Phys. Rev. Lett., 127, 43901(2021).

    [149] R. Gong, M. Zhang, H. Li, Z. Lan. Topological photonic crystal fibers based on second-order corner modes. Opt. Lett., 46, 3849(2021).

    [150] Y. Liu, A. Zhou, L. Yuan. Multi-functional fiber-optic sensor based on helix structure and fiber Bragg gratings for shape sensing. Opt. Laser Technol., 143, 107327(2021).

    [151] J. Yang, W. Li, H. Zhang, X. Zhang, L. Xi, W. Zhang. Modeling of the twist-induced effect in circular photonic crystal fiber transmitting orbital angular momentum modes. Results Phys., 28, 104626(2021).

    [152] G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, P. St.J. Russell. Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science, 337, 446(2012).

    [153] X. Xi, G. K. L. Wong, T. Weiss, P. St.J. Russell. Measuring mechanical strain and twist using helical photonic crystal fiber. Opt. Lett., 38, 5401(2013).

    [154] H. Wang, A. Yang. Dispersion and loss control of high birefringence photonic crystal fiber with CdSe/ZnS quantum dot film. J. Opt., 19, 045803(2017).

    [155] J. Yang, I. Ghimire, P. C. Wu, S. Gurung, C. Arndt, D. P. Tsai, H. W. H. Lee. Photonic crystal fiber metalens. Nanophotonics, 8, 443(2019).

    Data from CrossRef

    [1] Jingmin Zhou, Shuyang Xie, Chen Nie, Piaorong Xu, Jun Yi, Exian Liu. Optical Properties of a Moiré-lattice Photonic Crystal Fiber with Controllable Magic Angle. Results in Physics, 106659(2023).

    Exian Liu, Jianjun Liu. Quasiperiodic photonic crystal fiber [Invited][J]. Chinese Optics Letters, 2023, 21(6): 060603
    Download Citation