• Photonics Research
  • Vol. 7, Issue 11, 1363 (2019)
Yetian Huang1、2, Haoshuo Chen2、*, Hanzi Huang1、2, Zhengxuan Li1, Nicolas K. Fontaine2, Roland Ryf2, Juan Carlos Alvarado3, Rodrigo Amezcua-Correa3, John van Weerdenburg4, Chigo Okonkwo4, A. M. J. Koonen4, Yingxiong Song1, and Min Wang1
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
  • 2Nokia Bell Labs, Holmdel, New Jersey 07733, USA
  • 3CREOL, University of Central Florida, Orlando, Florida 32816, USA
  • 4Institute for Photonic Integration, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
  • show less
    DOI: 10.1364/PRJ.7.001363 Cite this Article Set citation alerts
    Yetian Huang, Haoshuo Chen, Hanzi Huang, Zhengxuan Li, Nicolas K. Fontaine, Roland Ryf, Juan Carlos Alvarado, Rodrigo Amezcua-Correa, John van Weerdenburg, Chigo Okonkwo, A. M. J. Koonen, Yingxiong Song, Min Wang. Mode- and wavelength-multiplexed transmission with crosstalk mitigation using a single amplified spontaneous emission source[J]. Photonics Research, 2019, 7(11): 1363 Copy Citation Text show less
    References

    [1] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [2] D. Melati, F. Morichetti, G. G. Gentili, A. Melloni. Optical radiative crosstalk in integrated photonic waveguides. Opt. Lett., 39, 3982-3985(2014).

    [3] K. Saitoh, S. Matsuo. Multicore fiber technology. J. Lightwave Technol., 34, 55-66(2016).

    [4] R. Ryf, N. K. Fontaine, S. Wittek, K. Choutagunta, M. Mazur, H. Chen, J. C. Alvarado-Zacarias, R. Amezcua-Correa, M. Capuzzo, R. Kopf, A. Tate, H. Safar, C. Bolle, D. T. Neilson, E. Burrows, K. Kim, M. Bigot-Astruc, F. Achten, P. Sillard, A. Amezcua-Correa, J. M. Kahn, J. Schröder, J. Carpenter. High-spectral-efficiency mode-multiplexed transmission over graded-index multimode fiber. European Conference on Optical Communication (ECOC), 1-3(2018).

    [5] R. G. H. van Uden, C. M. Okonkwo, H. Chen, H. de Waardt, A. M. J. Koonen. Time domain multiplexed spatial division multiplexing receiver. Opt. Express, 22, 12668-12677(2014).

    [6] B. Huang, N. K. Fontaine, B. G. Roland Ryf, S. G. Leon-Saval, R. Shubochkin, R. L. Y. Sun, G. Li. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers. Opt. Express, 23, 224-234(2015).

    [7] T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, R. R. Thomson. The photonic lantern. Adv. Opt. Photon., 7, 107-167(2015).

    [8] H. Chen, N. K. Fontaine, R. Ryf, J. C. Alvarado, J. van Weerdenburg, R. Amezcua-Correa, C. Okonkwo, T. Koonen. Optical crosstalk reduction using amplified spontaneous emission. Optical Fiber Communications Conference and Exposition (OFC), M4G.5(2018).

    [9] T. Mitsui. Dynamic range of optical reflectometry with spectral interferometry. Jpn. J. Appl. Phys., 38, 6133-6137(1999).

    [10] H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, M. Haruna. Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness. Appl. Opt., 41, 1315-1322(2002).

    [11] B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, P. R. Prucnal. Optical steganography based on amplified spontaneous emission noise. Opt. Express, 21, 2065-2071(2013).

    [12] Y. Huang, H. Chen, H. Huang, Y. Song, Z. Li, N. K. Fontaine, R. Ryf, J. C. Alvarado, R. Amezcua-Correa, M. Wang. Mode-multiplexed transmission with crosstalk mitigation using amplified spontaneous emission (ASE). Conference on Lasers and Electro-Optics (CLEO), SM1G.2(2019).

    [13] M. Marhic. Coherent optical CDMA networks. J. Lightwave Technol., 11, 854-864(1993).

    [14] T. Hamanaka, X. Wang, N. Wada, A. Nishiki, K. Kitayama. Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG en/decoder. J. Lightwave Technol., 24, 95-102(2006).

    [15] P. J. Winzer. Making spatial multiplexing a reality. Nat. Photonics, 8, 345-348(2014).

    [16] D. G. Brennan. Linear diversity combining techniques. Proc. IRE, 47, 1075-1102(1959).

    [17] B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi. Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link. Opt. Express, 21, 1561-1566(2013).

    [18] Z. Wang, C. Xie. Automatic optical polarization demultiplexing for polarization division multiplexed signals. Opt. Express, 17, 3183-3189(2009).

    [19] L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, J. R. Lingle, B. Pálsdóttir. Few mode transmission fiber with low DGD, low mode coupling, and low loss. J. Lightwave Technol., 30, 3693-3698(2012).

    [20] M. B. Shemirani, J. M. Kahn. Higher-order modal dispersion in graded-index multimode fiber. J. Lightwave Technol., 27, 5461-5468(2009).

    [21] D. Zhou, C. Sun, Y. Lai, Y. Yu, X. Zhang. Integrated silicon multifunctional mode-division multiplexing system. Opt. Express, 27, 10798-10805(2019).

    [22] S. Wang, H. Wu, H. K. Tsang, D. Dai. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems. Opt. Lett., 41, 5298-5301(2016).

    [23] L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 5, 3069(2014).

    Yetian Huang, Haoshuo Chen, Hanzi Huang, Zhengxuan Li, Nicolas K. Fontaine, Roland Ryf, Juan Carlos Alvarado, Rodrigo Amezcua-Correa, John van Weerdenburg, Chigo Okonkwo, A. M. J. Koonen, Yingxiong Song, Min Wang. Mode- and wavelength-multiplexed transmission with crosstalk mitigation using a single amplified spontaneous emission source[J]. Photonics Research, 2019, 7(11): 1363
    Download Citation