• Acta Optica Sinica
  • Vol. 37, Issue 3, 314001 (2017)
Liu Zhen1、*, Wang Jiaqi11, Yu Hongyan1, Zhou Xuliang1, Chen Weixi2, Ding Ying3, Li Zhaosong1, Wang Wei1, and Pan Jiaoqing1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0314001 Cite this Article Set citation alerts
    Liu Zhen, Wang Jiaqi1, Yu Hongyan, Zhou Xuliang, Chen Weixi, Ding Ying, Li Zhaosong, Wang Wei, Pan Jiaoqing. Tunnel Junction Cascade Quantum Well Mode-Locked Laser[J]. Acta Optica Sinica, 2017, 37(3): 314001 Copy Citation Text show less
    References

    [1] Li Pan, Shi Lei, Wang Xuefeng, et al. Experimental investigation of the supercontinuum generated by amplificated high repetition mode-locked pulses[J]. Acta Optica Sinica, 2015, 35(s2): s214006.

    [2] Gou Doudou, Yang Sigang, Yin Feifei, et al. Widely tunable mode-locked fiber laser operating in 1 μm wavelength range[J]. Acta Optica Sinica, 2013, 33(7): 0706013.

    [3] Liu S, Wang H, Sun M, et al. AWG-based monolithic GHz multichannel harmonically mode-locked laser[J]. IEEE Photonics Technology Letters, 2016, 28(3): 241-244.

    [4] Merghem K, Akrout A, Martinez A, et al. Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser[J]. Optics Express, 2008, 16(14): 10675-10683.

    [5] Sarailou E, Ardey A, Delfyett P J. Alinearized intensity modulator for photonic analog-to-digital conversion using an injection-locked mode-locked laser[J]. Journal of Lightwave Technology, 2014, 32(21): 3440-3445.

    [6] Nagatsuma T, Shinagawa M, Sabri N, et al. 1.55 μm photonic systems for microwave and millimeter-wave measurement[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10): 1831-1839.

    [7] Hellwarth R, Christensen P. Nonlinear optical microscope using second harmonic generation[J]. Appl Opt, 1975, 14(2): 247-248.

    [8] Wang H, Kong L, Forrest A, et al. Ultrashort pulse generation by semiconductor mode-locked lasers at 760 nm[J]. Optics Express, 2014, 22(21): 25940-25946.

    [9] Fukuda M, Okayasu M, Temmyo J, et al. Degradation behavior of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation[J]. IEEE Journal of Quantum Electronics, 1994, 30(2): 471-476.

    [10] Makino T, Evans J D, Mak G.Maximum output power and maximum operating temperature of quantum well lasers[J]. Applied Physics Letters, 1997, 71(20): 2871-2873.

    [11] Lian Peng, Yin Tao, Gao Guo, et al. Novel coupled multi-active region high power semiconductor lasers cascaded via tunnel junction[J]. Acta Physica Sinica, 2000, 49(12): 2374-2377.

    [12] Li Jianjun, Han Jun, Deng Jun, et al. Tunnel regeneration high-power semiconductor laser with four active regions[J]. Acta Optica Sinica, 2006, 26(12): 1819-1822.

    [13] Lentine A L, Miller D A B, Henry J E, et al. Multistate self-electro optic effect devices[J]. IEEE Journal of Quantum Electronics, 1989, 25(8): 1921-1927.

    [14] Williams K A, Thompson M G, White I H. Long-wavelength monolithic mode-locked diode lasers[J]. New Journal of Physics, 2004, 6(1): 179.

    [15] Gopinath J T, Chann B, Huang R K, et al. 980-nm monolithic passively mode-locked diode lasers with 62 pJ of pulse energy[J]. IEEE Photonics Technology Letters, 2007, 19(12): 937-939.

    [16] Lorenser D, Unold H J, Maas D, et al. Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers[J]. Applied Physics B, 2004, 79(8): 927-932.

    Liu Zhen, Wang Jiaqi1, Yu Hongyan, Zhou Xuliang, Chen Weixi, Ding Ying, Li Zhaosong, Wang Wei, Pan Jiaoqing. Tunnel Junction Cascade Quantum Well Mode-Locked Laser[J]. Acta Optica Sinica, 2017, 37(3): 314001
    Download Citation