• Matter and Radiation at Extremes
  • Vol. 4, Issue 6, 067201 (2019)
Dmitrii Andreev*, Artem Kuskov, and Edl Schamiloglu
Author Affiliations
  • Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
  • show less
    DOI: 10.1063/1.5100028 Cite this Article
    Dmitrii Andreev, Artem Kuskov, Edl Schamiloglu. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4(6): 067201 Copy Citation Text show less
    References

    [1] J. J. Coupling. Maggie, 77-93(1948).

    [2] S. Phelps. The Tizard Mission: The Top-Secret Operation that Changed the Course of World War II(2010).

    [3] G. Galati, Y. Blanchard, P. van Genderen. The cavity magnetron: Not just a British invention. IEEE Antennas Propag. Mag., 55, 244-254(2013).

    [4] G. Bekefi, T. J. Orzechowski. Giant microwave bursts emitted from a field-emission, relativistic-electron-beam magnetron. Phys. Rev. Lett., 37, 379-382(1976).

    [5] N. Kovalev, E. Soluyanov, B. Kol’chugin, M. Fuks, M. Ofitserov, V. Nechaev. Relativistic magnetron with diffraction coupling. Sov. Tech. Phys. Lett., 3, 430-434(1977).

    [6] V. B. Neculaes, R. M. Gilgenbach, Y. Y. Lau. Low-noise microwave magnetrons by azimuthally varying axial magnetic field. Appl. Phys. Lett., 83, 1938-1940(2003).

    [7] V. B. Neculaes, W. M. White, Y. Y. Lau, M. C. Jones, R. M. Gilgenbach. Simulation of rapid startup in microwave magnetrons with azimuthally varying axial magnetic fields. Appl. Phys. Lett., 84, 1016-1018(2004).

    [8] V. B. Neculaes, R. M. Gilgenbach, M. C. Jones, Y. Y. Lau, W. M. White. Cathode priming of a relativistic magnetron. Appl. Phys. Lett., 85, 6332-6334(2004).

    [9] M. C. Jones, V. B. Neculaes, Y. Y. Lau, R. M. Gilgenbach, B. W. Hoff, W. M. White, N. M. Jordan. Magnetron priming by multiple cathodes. Appl. Phys. Lett., 87, 081501-1-081501-3(2005).

    [10] M. Fuks, E. Schamiloglu. Rapid start of oscillations in a magnetron with a “transparent” cathode. Phys. Rev. Lett., 96, 205101-1-205101-4(2005).

    [11] M. Daimon, W. Jiang. Modified configuration of relativistic magnetron with diffraction output for efficiency improvement. Appl. Phys. Lett., 91, 191503-1-191503-3(2007).

    [12] M. Daimon, G. Imada, W. Jiang, K. Itoh. Experimental demonstration of relativistic magnetron with modified output configuration. Appl. Phys. Lett., 92, 191504-1-191504-3(2008).

    [13] E. Schamiloglu, M. I. Fuks. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna. IEEE Trans. Plasma Sci., 38, 1302-1312(2010).

    [14] J. McConaha, C. J. Buchenauer, E. Schamiloglu, M. I. Fuks, C. Leach, S. Prasad. Experimental demonstration of a high-efficiency relativistic magnetron with diffraction output with spherical cathode endcap. IEEE Trans. Plasma Sci., 45, 282-288(2017).

    [15] E. Schamiloglu, M. I. Fuks. Application of a magnetic mirror to increase total efficiency in relativistic magnetrons. Phys. Rev. Lett., 122, 224801-1-224801-5(2019).

    [16] J. Benford, V. L. Granatstein, I. Alexeff. Relativistic magnetrons. High-Power Microwave Sources(1987).

    [17] S. H. Gold, G. S. Nusinovich. Review of high-power microwave source research. Rev. Sci. Instrum., 68, 3945-3974(1997).

    [18] E. Schamiloglu, J. Benford, J. Swegle. High Power Microwaves(2015).

    [19] J. Benford. History and future of the relativistic magnetron, 40-45(2010).

    [20] J. Goerth. Early magnetron development especially in Germany, 17-22(2010).

    [21] A. W. Hull. The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders. Phys. Rev., 18, 31-57(1921).

    [22] A. W. Hull. The magnetron. J. Am. Inst. Electr. Eng., 40, 715-723(1921).

    [23] N. A. Borisova. Cavity magnetron in Russia, 23-33(2010).

    [24] D. E. Malyarov, H. F. Alexeev. Getting powerful vibrations of magnetrons in centimeter wavelength range. Mag. Tech. Phys., 10, 1297-1300(1940).

    [25] Y. Blanchard. Maurice Ponte and Henri Gutton, pioneers of early French studies on resonant magnetron (1932–1940), 5-10(2010).

    [26] K. Okabe. On the short-wave limit of magnetron oscillations. Proc. IRE, 17, 652-659(1929).

    [27] H. Yagi. Beam transmission of ultra-short waves. Proc. IRE, 16, 715-740(1928).

    [28] A. Žaček. A new method for generation of undamped oscillations (a preliminary report). Č. Pěstováni Mat. Fys., 53, 378-380(1924).

    [29] E. Habann. Eine neue Generatorröhre (A New Generator Tube)(1924).

    [30] M. Ponte. Système de liaison SFR à magnétrons par ondes extra-courtes” “SFR system of communication using magnetrons on very short waves, 61-94(1934).

    [31] M. Ponte. Sur l’emploi des champs magnétiques pour la production des ondes ultra-courtes” (“On the use of magnetic fields for the production of ultra-short waves”), 183-198(1935).

    [32] H. Gutton. Etudes et recherches en hyperfréquence, application au radar de 1933 à 1940” (“Microwave studies and researches, radar application from 1933 to 1940”). Pers. Rep. I.

    [33] K. Fritz. Beitrag zur geschichte der magnetronentwicklung in Deutschland bis 1945” (“Contribution to the history of magnetron development in Germany until 1945”). Arch. Elektrischen Übertragung, 6, 209-210(1952).

    [34] J. T. Randall, H. A. H. Boot. The cavity magnetron. J. Inst. Electr. Eng., 93, 928-938(1946).

    [35] J. E. Brittain. The magnetron and the beginnings of the microwave age. Phys. Today, 38, 60-67(1985).

    [36] , 232.

    [37] A. A. Neuber, M. Gundersen, R. J. Barker, E. Schamiloglu. Modern pulsed power: Charlie Martin and beyond. Proc. IEEE, 92, 1014-1020(2004).

    [38] G. Bekefi, A. Palevsky. Microwave emission from pulsed, relativistic e-beam diodes. II. The multiresonator magnetron. Phys. Fluids, 22, 986-996(1979).

    [39] R. H. Levy, O. Buneman, L. M. Linson. Stability of crossed-field electron beams. J. Appl. Phys., 37, 3203-3222(1966).

    [40] G. Bekefi, T. J. Orzechowski. Microwave emission from pulsed, relativistic e-beam diodes. I. The smooth-bore magnetron. Phys. Fluids, 22, 978-985(1979).

    [41] W. P. Ballard, S. A. Self, F. W. Crawford. A relativistic magnetron with a thermionic cathode. J. Appl. Phys., 53, 7580-7591(1982).

    [42] J. Golden, G. Bekefi, J. Orzechowski. Magnetic insulation of an intense relativistic electron beam. J. Appl. Phys., 45, 3211-3212(1974).

    [43] G. Bekefi, K. D. Bergeron, T. J. Orzechowski. Electron and plasma flow in a relativistic diode subjected to a crossed magnetic field, 303-345(1975).

    [44] Yu. G. Shtein, Iu. G. Iushkov, A. N. Didenko, A. S. Sulakshin, G. P. Fomenko. Intense microwave emission from a relativistic magnetron. Sov. Tech. Phys. Lett., 4, 3-4(1978).

    [45] Iu. G. Iushkov, A. N. Didenko, A. S. Sulakshin, G. P. Fomenko, V. I. Tsvetkov, Iu.G. Shtein. Relativistic magnetron with microsecond pulse lengths. Sov. Tech. Phys. Lett., 4, 331-332(1978).

    [46] W. O. Eckhardt, F. Chilton, J. G. Small. Decoy discrimination using ground-based high power microwaves. Proc. SPIE, 1061, 342-349(1989).

    [47] H. Sze, B. Harteneck, W. Woo, R. R. Smith, J. Benford. Phase locking of relativistic magnetrons. Phys. Rev. Lett., 62, 969-971(1989).

    [48] J. S. Levine, J. Benford, B. Harteneck, N. Aiello. Design and operation of a module of phase-locked relativistic magnetrons. J. Appl. Phys., 70, 2838-2848(1991).

    [49] M. I. Yalandin, V. G. Shpak, A. G. Sadykova, V. V. Rostov, K. A. Sharypov, S. A. Shunailov. A phase-stabilized superradiant Ka-band oscillator driven by nanosecond voltage pulses with amplitude variations and reduced rise rates. Appl. Phys. Lett., 113, 223502-1-223502-5(2018).

    [50] A. D. Andreev. Computer simulations of frequency- and phase-locking of cavity magnetrons. J. Electromagn. Wave Appl., 32, 1501-1518(2018).

    [51] B. D. Harteneck, H. D. Price, J. S. Levine. Frequency-agile relativistic magnetrons. Proc. SPIE, 2557, 74-79(1995).

    [52] J. Swegle, J. Benford, E. Schamiloglu. High Power Microwaves, 190-192(2015).

    [53] R. M. Gilgenbach, M. C. Jones, W. M. White, Y. Y. Lau, V. B. Neculaes, M. R. Lopez. Projection ablation lithography cathode for high-current, relativistic magnetron. Rev. Sci. Instrum., 75, 2976-2980(2004).

    [54] M. Fuks, E. Schamiloglu, S. Prasad, H. Bosman. Improvement of the output characteristics of magnetrons using the transparent cathode. IEEE Trans. Plasma Sci., 34, 606-619(2006).

    [55] M. D. Haworth, P. J. Mardahl, L. Bowers, M. T. Bettencourt, K. Cartwright, T. P. Fleming. Virtual prototyping of novel cathodes for the relativistic magnetron. Comput. Sci. Eng., 9, 18-28(2007).

    [56] V. B. Neculaes. Magnetic priming for rapid startup and noise reduction(2005).

    [57] J. W. Luginsland, V. B. Neculaes, Y. Y. Lau, H. L. Bosman, W. M. White, N. M. Jordan, P. Pengvanich, B. W. Hoff, Y. Hidaka, M. C. Jones, R. M. Gilgenbach. Magnetic perturbation effects on noise and startup in DC-operating oven magnetrons. IEEE Trans. Plasma Sci., 52, 864-871(2005).

    [58] L. Ludeking, B. Goplen, G. Warren, D. Smith. User-configurable MAGIC for electromagnetic PIC calculations. Comput. Phys. Commun., 87, 54-86(1995).

    [59] E. Schamiloglu, C. J. Buchenauer, M. Roybal, M. I. Fuks, K. Prestwich, S. Prasad. Magnetron experiments on the short-pulse ‘SINUS-6’ accelerator, 441-442(2008).

    [60] G. Benford, J. Benford. Survey of pulse shortening in high-power microwave sources. IEEE Trans. Plasma Sci., 25, 311-317(1997).

    [61] E. Schamiloglu, Y. Y. Lau. The 7th special issue on high-power microwave generation. IEEE Trans. Plasma Sci., 26, 232-234(1998).

    [62] F. J. Agee. Evolution of pulse shortening research in narrow band, high power microwave sources. IEEE Trans. Plasma Sci., 26, 235-245(1998).

    [63] R. J. Barker, E. Schamiloglu. High Power Microwave Sources and Technologies(2001).

    [64] J. S. Levine, D. Price, J. Benford. Diode plasma effects on the microwave pulse length from relativistic magnetrons. IEEE Trans. Plasma Sci., 26, 348-353(1998).

    [65] P. Duselis, M. Haworth, K. Golby, M. Ruebush, K. Cartwright, J. Luginsland, M. LaCour, D. Shiffler, S. Heidger, D. Sullivan, R. Umstattd. Review of cold cathode research at the Air Force Research Laboratory. IEEE Trans. Plasma Sci., 36, 718-728(2008).

    [66] M. Ruebush, J. Heggemeier, D. A. Shiffler, K. Golby, M. J. LaCour. Low level plasma formation in a carbon velvet cesium iodide coated cathode. Phys. Plasmas, 11, 1680-1684(2004).

    [67] E. Schamiloglu, M. Fuks. Optimization of the parameters of a relativistic magnetron with diffraction output. Proc. SPIE, 4720, 18-27(2002).

    [68] A. Andreev, E. Schamiloglu, N. F. Kovalev, M. Fuks. Mode conversion in a magnetron with axial extraction of radiation. IEEE Trans. Plasma Sci., 34, 620-626(2006).

    [69] Y. G. Liu, W. Li. An efficient mode conversion configuration in relativistic magnetron with axial diffraction output. J. Appl. Phys., 106, 053303-1-053303-3(2009).

    [70] W. Li, Y. G. Liu. Choosing optimum method for the efficient design of a relativistic magnetron with diffraction output. J. Appl. Phys., 108, 113303-1-113303-5(2010).

    [71] W. Li, Y. G. Liu. Modified magnetic field distribution in relativistic magnetron with diffraction output for compact operation. Phys. Plasmas, 18, 023103-1-023103-4(2011).

    [72] Y. G. Liu, D.-F. Shi, J. Zhang, H.-W. Yang, W. Li. Frequency agile characteristics of a dielectric filled relativistic magnetron with diffraction output. Appl. Phys. Lett., 101, 223506-1-223506-3(2012).

    [73] Y.-W. Fan, T. Shu, H.-W. Yang, Y.-G. Liu, C.-W. Yuan, J. Zhang, W. Li. Experimental demonstration of a compact high efficient relativistic magnetron with directly axial radiation. Phys. Plasmas, 19, 013105-1-013105-4(2012).

    [74] J. Zhang, T. Shu, W. Li, C.-W. Yuan, H.-W. Yang, Y.-G. Liu, Y.-W. Fan. Effects of the transparent cathode on the performance of a relativistic magnetron with axial radiation. Rev. Sci. Instrum., 83, 024707-1-024707-4(2012).

    [75] B.-L. Qian, H.-W. Yang, Y. G. Liu, J. Zhang, W. Li. Experimental investigations of the TE11 mode radiation from a relativistic magnetron with diffraction output. Phys. Plasmas, 19, 113108-1-113108-3(2012).

    [76] J. Zhang, D.-F. Shi, Y.-G. Liu, W. Q. Zhang, W. Li. Experimental investigations on the relations between configurations and radiation patterns of a relativistic magnetron with diffraction output. J. Appl. Phys., 113, 023304-1-023304-4(2013).

    [77] W. Li, Y.-W. Wang, B.-L. Qian, H.-G. Wang, D.-F. Shi. A compact mode conversion configuration in relativistic magnetron with a TE10 output mode. IEEE Trans. Plasma Sci., 43, 3512-3516(2015).

    [78] D.-F. Shi, H.-G. Wang, W. Li, B.-L. Qian. A novel TE11 mode axial output structure for a compact relativistic magnetron. J. Phys. D: Appl. Phys., 49, -135103-6(2016).

    [79] D.-F. Shi, B.-L. Qian, G.-X. Du, W. Li, H.-G. Wang. A novel relativistic magnetron with circularly polarized TE11 coaxial waveguide mode. J. Phys. D: Appl. Phys., 49, 465104-1-465104-7(2016).

    [80] W. Li, H.-G. Wang, G.-X. Du, D.-F. Shi, B.-L. Qian. Theoretical investigations on radiation generation of TEM, linearly or circularly polarized TEn1 coaxial waveguide mode in relativistic magnetron. Sci. Rep., 7, 1491-1-1491-11(2017).

    [81] B.-L. Qian, H.-G. Wang, D.-F. Shi, W. Li, G.-X. Du. A frequency tunable relativistic magnetron with a wide operation regime. AIP Adv., 7, 025010-1-025010-12(2017).

    [82] H.-G. Wang, D.-F. Shi, J.-C. Ju, B.-L. Qian, G.-X. Du, W. Li. A modified relativistic magnetron with TEM output mode. Phys. Plasmas, 24, 013118-1-013118-6(2017).

    [83] Y. Yang, Y. Dong, W. Yang, Z. Dong. Numerical investigation of the relativistic magnetron using a novel semitransparent cathode. IEEE Trans. Plasma Sci., 42, 3458-3464(2014).

    [84] X.-Y. Wang, T. Shu, D.-F. Shi, Y.-W. Fan. A high-efficiency relativistic magnetron with the filled dielectric. Phys. Plasmas, 23, 073103-1-073103-4(2016).

    [85] D. Wang, L. Lei, F. Qin, S. Xu. Preliminary experimental investigation of a compact high-efficiency relativistic magnetron with low guiding magnetic field. IEEE Trans. Plasma Sci., 47, 209-213(2019).

    [86] S. Li, Y. Fan, X. Wang. An L-band relativistic magnetron with cathode priming. IEEE Trans. Plasma Sci., 47, 204-208(2019).

    [87] L.-R. Lei, S. Xu, D. Wang, B.-Q. Ju, F. Qin. A compact relativistic magnetron with lower output mode. IEEE Trans. Electron Devices, 66, 1960-1964(2019).

    [88] J. Li, T. Li, B. Hu. Experimental studies on the A6 relativistic magnetron with permanent magnet. IEEE Trans. Plasma Sci., 39, 1776-1780(2011).

    [89] M. Liu, M. I. Fuks, E. Schamiloglu, C. Liu. Operation characteristics of 12-cavity relativistic magnetron with single-stepped cavities. IEEE Trans. Plasma Sci., 42, 3283-3287(2014).

    [90] M. I. Fuks, M. Liu, C. Liu, E. Schamiloglu. Operation characteristics of A6 relativistic magnetron using single-stepped cavities with axial extraction. IEEE Trans. Plasma Sci., 42, 3344-3348(2014).

    [91] M. Fuks, M. Liu, C.-L. Liu, E. Schamiloglu, L. I. Bolun. Simulation of secondary electron emission and backscattered electron emission in A6 relativistic magnetron driven by different cathodes. Plasma Sci. Technol., 17, 64-70(2015).

    [92] W. Jiang, M. I. Fuks, M. Liu, C. Liu, E. Schamiloglu. Operation characteristics of a 12-cavity relativistic magnetron when considering secondary and backscattered electron emission. IEEE Trans. Plasma Sci., 43, 1855-1861(2015).

    [93] Z. Huang, M. Fuks, W. Jiang, C.-L. Liu, E. Schamiloglu, M. Liu. Investigation of the operating characteristics of a 12-cavity rising-sun relativistic magnetron with diffraction output using particle-in-cell simulations. Phys. Plasmas, 23, 052104-1-052104-9(2016).

    [94] C. Liu, E. Schamiloglu, W. Jiang, M. Liu, Z. Wang. Optimizing the parameters of a 12-cavity rising-sun relativistic magnetron with single-stepped cavities for π-mode operation. IEEE Trans. Plasma Sci., 44, 2852-2858(2016).

    [95] E. Schamiloglu, W. Jiang, M. Fuks, C. Liu, M. Liu. Investigation of the operating characteristics of a 12 stepped-cavity relativistic magnetron with axial extraction driven by an ‘F’ transparent cathode using particle-in-cell simulations. Phys. Plasmas, 23, 112109-1-112109-10(2016).

    [96] C. Liu, J. Feng, M. Liu, M. I. Fuks, W. Jiang, E. Schamiloglu. ‘Crab-like’ A6 relativistic magnetron with diffraction output driven by a transparent cathode. Phys. Plasmas, 26, 013301-1-013301-4(2019).

    [97] Y. Hadas, I. Schnitzer, A. Sayapin, Y. E. Krasik, V. Bernshtam. Plasma dynamics during relativistic S-band magnetron operation. J. Appl. Phys., 104, 064125-1-064125-7(2008).

    [98] Y. Hadas, Y. E. Krasik, A. Sayapin. Drastic improvement in the S-band relativistic magnetron operation. Appl. Phys. Lett., 95, 074101-1-074101-3(2009).

    [99] Y. E. Krasik, T. Kweller, Y. Hadas, A. Sayapin. S-band relativistic magnetron operation with an active plasma cathode. J. Appl. Phys., 105, 083307-1-083307-7(2009).

    [100] Y. Hadas, V. Bernshtam, A. Sayapin, T. Kweller, Y. E. Krasik. Plasma parameters of an active cathode during relativistic magnetron operation. J. Appl. Phys., 106, 063306-1-063306-5(2009).

    [101] Y. E. Krasik, A. Sayapin. Numerical simulation of the magnetron operation with resonance load. J. Appl. Phys., 107, 074501-1-074501-7(2010).

    [102] A. Shlapakovski, A. Sayapin. Transient operation of the relativistic S-band magnetron with radial output. J. Appl. Phys., 109, 063301-1-063301-5(2011).

    [103] T. Queller, Y. E. Krasik, J. Z. Gleizer. Secondary-electrons-induced cathode plasma in a relativistic magnetron. Appl. Phys. Lett., 101, 214101-1-214101-4(2012).

    [104] A. Levin, Y. E. Krasik, A. Sayapin. Stabilization of the frequency of relativistic S-band magnetron with radial output. IEEE Trans. Plasma Sci., 41, 3001-3004(2013).

    [105] Y. E. Krasik, A. S. Shlapakovski, J. G. Leopold, A. Sayapin. Revisiting power flow and pulse shortening in a relativistic magnetron. IEEE Trans. Plasma Sci., 43, 3168-3175(2015).

    [106] A. Levin, Y. E. Krasik, A. Sayapin. Operation of a six-cavity S-band relativistic magnetron at frequencies in the range of its resonant response. IEEE Trans. Plasma Sci., 43, 3827-3832(2015).

    [107] Y. E. Krasik, J. G. Leopold, A. F. Sayapin, A. S. Shlapakovski. Pulse-shortening in a relativistic magnetron: The role of anode block axial endcaps. IEEE Trans. Plasma Sci., 44, 1375-1385(2016).

    [108] A. Sayapin, Y. E. Krasik, U. Dai. S-band relativistic magnetron operation with multichannel radial outputs of the microwave power. IEEE Trans. Plasma Sci., 45, 229-234(2017).

    [109] Y. E. Krasik, U. Dai, J. G. Leopold. A relativistic magnetron operated with permanent magnets. IEEE Trans. Plasma Sci., 47, 3997-4005(2019).

    [110] M. C. Jones, V. B. Neculaes, B. W. Hoff, W. M. White, R. Edgar, P. Pengvanich, N. M. C. Jordan, T. A. Spencer, R. M. Gilgenbach, Y. Y. Lau, D. Price. Radio frequency priming of a long-pulse relativistic magnetron. IEEE Trans. Plasma Sci., 34, 627-634(2006).

    [111] R. Adler. A study of locking phenomena in oscillators. Proc. IEEE, 61, 1380-1385(1973).

    [112] C. Michel, M. Fuks, E. Schamiloglu, S. Prasad, C.-L. Liu, M. Liu. RF mode switching in a relativistic magnetron with diffraction output. Appl. Phys. Lett., 97, 251501-1-251501-3(2010).

    [113] M. Liu, E. Schamiloglu, C. Michel, C.-L. Liu, M. I. Fuks, S. Prasad, D. Galbreath. Frequency switching in a relativistic magnetron with diffraction output. J. Appl. Phys., 110, 033304-1-033304-7(2011).

    [114] M. Fuks, E. Schamiloglu, C.-L. Liu, M. Liu. Frequency switching in a 12-cavity relativistic magnetron with axial extraction of radiation. IEEE Trans. Plasma Sci., 40, 1569-1574(2012).

    [115] B. van der Pol. The nonlinear theory of electric oscillations. Proc. IRE, 22, 1051-1086(1934).

    [116] C. Leach, S. Prasad, E. Schamiloglu, M. Fuks. Compact relativistic magnetron with Gaussian radiation pattern. IEEE Trans. Plasma Sci., 40, 3116-3120(2012).

    [117] C. Leach, E. Schamiloglu, M. Fuks, S. Prasad. Compact A6 magnetron with permanent magnet. Proceedings of the 2012 IEEE International Vacuum Electronics Conference, 491-492(2012).

    [118] J. McConaha. Experimental verification of the concept of the relativistic magnetron with a simple mode converter(2016).

    [119] A. J. Sandoval. Experimental verification of A6 magnetron with permanent magnet(2018).

    [120] S. Prasad, E. Schamiloglu, C. Leach, M. Fuks. Suppression of leakage current in a relativistic magnetron using a novel design cathode endcap. IEEE Trans. Plasma Sci., 40, 2089-2093(2012).

    [121] Z.-Q. Li, J. Zhang, J.-H. Yang, W. Li. A tunable high power microwave source with permanent magnets coating, 62-64(2016).

    [122] E. Schamiloglu, S. Prasad, M. I. Fuks. Efficient magnetron with a virtual cathode. IEEE Trans. Plasma Sci., 44, 1298-1302(2016).

    [123] E. Schamiloglu, S. Prasad, M. Fuks. Lengthy virtual cathode as key to repetitive operation of relativistic magnetrons, 122-123(2016).

    [124] A. Kuskov, D. A. Andreev, M. I. Fuks, E. Schamiloglu. Low energy state electron beam in a uniform channel. Plasma, 2, 222-228(2019).

    [125] S. A. Kurkin, M. I. Fuks, A. A. Koronovskii, E. Schamiloglu. Efficient relativistic magnetron with lengthy virtual cathode formed using the magnetic mirror effect, 1-2(2017).

    [126] D. R. Galbreath. Influence of implementing straps on pulsed relativistic magnetron operation(2012).

    [127] J. Luginsland, B. W. Hoff, M. Franzi, R. M. Gilgenbach, Y. Y. Lau, D. M. French. Recirculating planar magnetrons for high-power high-frequency radiation generation. IEEE Trans. Plasma Sci., 39, 980-987(2011).

    [128] R. M. Gilgenbach, Y. Y. Lau, J. Luginsland, B. W. Hoff, M. A. Franzi, D. Simon, D. A. Chalenski. Recirculating-planar-magnetron simulations and experiment. IEEE Trans. Plasma Sci., 41, 639-645(2013).

    [129] B. Hoff, P. Zhang, Y. Y. Lau, G. Greening, M. Franzi, R. Gilgenbach. Passive mode control in the recirculating planar magnetron. Phys. Plasmas, 20, 033108-1-033108-8(2013).

    [130] R. M. Gilgenbach, D. H. Simon, G. Greening, B. W. Hoff, Y. Y. Lau, P. Wong. Stability of Brillouin flow in planar, conventional, and inverted magnetrons. Phys. Plasmas, 22, 082104-1-082104-5(2015).

    [131] J. Luginsland, R. M. Gilgenbach, M. A. Franzi, D. H. Simon, Y. Y. Lau, G. B. Greening, N. M. Jordan, B. W. Hoff. Microwave power and phase measurements on a recirculating planar magnetron. IEEE Trans. Plasma Sci., 43, 1675-1682(2015).

    [132] D. H. Simon, S. C. Exelby, Y. Y. Lau, R. M. Gilgenbach, G. B. Greening, N. M. Jordan. Multi-frequency recirculating planar magnetrons. Appl. Phys. Lett., 109, 074101-1-074101-4(2016).

    [133] D. A. Packard, R. M. Gilgenbach, S. C. Exelby, Y. Y. Lau, G. B. Greening, N. M. Jordan. Harmonic frequency locking in the multifrequency recirculating planar magnetron. IEEE Trans. Electron Devices, 65, 2347-2353(2018).

    [134] Y. Y. Lau, N. M. Jordan, G. B. Greening, D. A. Packard, S. C. Exelby, R. M. Gilgenbach. Pulse shortening in recirculating planar magnetrons. IEEE Trans. Electron Devices, 65, 2354-2360(2018).

    [135] P. L. Kapitza. The prospects for the future development of high-power electronics. High-Power Microwave Electronics, 106-114(1964).

    [136] W. C. Brown. Traveling wave device(211967).

    [137] B. W. Hoff, R. M. Gilgenbach, Y. Y. Lau, D. M. French. Negative, positive, and infinite mass properties of a rotating electron beam. Appl. Phys. Lett., 97, 111501-1-111501-3(2010).

    [138] J. D. Keisling, T. P. Fleming, P. J. Mardahl, M. R. Lambrecht. Inverted magnetron with amplifying structure and associated systems and methods(132018).

    [139] R. R. Smith, L. Schlitt, P. Sincerny, N. Cooksey, N. Aiello, B. D. Harteneck, L. Thompson, J. S. Levine, J. N. Benford, D. V. Drury, S. Ashby. High peak and average power with an L-band relativistic magnetron on CLIA. IEEE Trans. Plasma Sci., 20, 344-350(1992).

    [140] B. W. Hoff, S. C. Exelby, R. M. Gilgenbach, G. B. Greening, N. M. Jordan, S. S. Maestas. Additively manufactured high power microwave anodes. IEEE Trans. Plasma Sci., 44, 1258-1264(2016).

    [141] P. B. Welander, S. Tantawi, A. Mehta, E. A. Nanni, M. Kozina, D. Gamzina, C. Ledford, T. Horn. Copper reconsidered: Material innovations to transform vacuum electronics. Abstracts for IVEC 2019(2019).

    Dmitrii Andreev, Artem Kuskov, Edl Schamiloglu. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4(6): 067201
    Download Citation