• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1716001 (2021)
Nanning Yi, Rong Zong, Jiang Gong, Rongrong Qian*, and Tao Duan
Author Affiliations
  • School of Information, Yunnan University, Kunming , Yunnan 650500, China
  • show less
    DOI: 10.3788/LOP202158.1716001 Cite this Article Set citation alerts
    Nanning Yi, Rong Zong, Jiang Gong, Rongrong Qian, Tao Duan. Broadband Tunable Terahertz Polarization Converter Based on Hollow Butterfly-Shape Graphene[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1716001 Copy Citation Text show less
    References

    [1] Fan R H, Zhou Y, Ren X P et al. Freely tunable broadband polarization rotator for terahertz waves[J]. Advanced Materials, 27, 1201-1206(2015).

    [2] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928(2002).

    [3] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [4] Max B, EMIL W[M]. Principles of optics(1999).

    [5] Du G X, Saito S, Takahashi M. Tailoring the Faraday effect by birefringence of two dimensional plasmonic nanorod array[J]. Applied Physics Letters, 99, 191107(2011).

    [6] Liu W, Chen S, Li Z et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface[J]. Optics Letters, 40, 3185-3188(2015).

    [7] Enoch S, Tayeb G, Sabouroux P et al. A metamaterial for directive emission[J]. Physical Review Letters, 89, 213902(2002).

    [8] Padilla W J, Taylor A J, Highstrete C et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Physical Review Letters, 96, 107401(2006).

    [9] Papasimakis N, Luo Z Q, Shen Z X et al. Graphene in a photonic metamaterial[J]. Optics Express, 18, 8353-8359(2010).

    [10] Jiang Y N, Wang L, Wang J et al. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies[J]. Optics Express, 25, 27616-27623(2017).

    [11] Ako R T, Lee W S L, Bhaskaran M et al. Broadband and wide-angle reflective linear polarization converter for terahertz waves[J]. APL Photonics, 4, 096104(2019).

    [12] Novoselov K S, Fal’ko V I, Colombo L et al. A roadmap for graphene[J]. Nature, 490, 192-200(2012).

    [13] Zeng F, Ye L F, Li L et al. Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials[J]. Optics Express, 27, 33826-33839(2019).

    [14] Yang C, Luo Y, Guo J X et al. Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene[J]. Optics Express, 24, 16913-16922(2016).

    [15] Ding J, Arigong B, Ren H et al. Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array[J]. Plasmonics, 10, 351-356(2015).

    [16] Chen M, Sun W, Cai J J et al. Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface[J]. Plasmonics, 12, 699-705(2017).

    [17] Ye L F, Sui K H, Zhang Y et al. Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications[J]. Nanoscale, 11, 3229-3239(2019).

    [18] Ye L F, Sui K H, Liu Y H et al. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation[J]. Optics Express, 26, 15935-15947(2018).

    [19] Mou N L, Sun S L, Dong H X et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces[J]. Optics Express, 26, 11728-11736(2018).

    [20] Liu Z M, Guo L, Zhang Q M. A simple and efficient method for designing broadband terahertz absorber based on singular graphene metasurface[J]. Nanomaterials, 9, E1351(2019).

    [21] Zhang Y, Shi Y, Liang C H. Broadband tunable graphene-based metamaterial absorber[J]. Optical Materials Express, 6, 3036-3044(2016).

    [22] Deng G S, Chen P, Yang J et al. Graphene-based tunable polarization sensitive terahertz metamaterial absorber[J]. Optics Communications, 380, 101-107(2016).

    [23] Li J, Tao J, Chen Z H et al. All-optical controlling based on nonlinear graphene plasmonic waveguides[J]. Optics Express, 24, 22169-22176(2016).

    [24] Yadav V S, Ghosh S K, Bhattacharyya S et al. Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence[J]. Applied Optics, 57, 8720-8726(2018).

    [25] Zhu J F, Li S F, Deng L et al. Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial[J]. Optical Materials Express, 8, 1164-1173(2018).

    [26] Zhang H T, Cheng Y Z, Huang M L. Broadband terahertz tunable metasurface linear polarization converter based on graphene[J]. Opto-Electronic Engineering, 46, 49-58(2019).

    [27] Sun P. Characteristic analysis and application of graphene surface plasmons[D], 2-4(2018).

    [28] Zhou L, Zhao G Z, Li Y H. Broadband terahertz polarization converter based on L-shaped metamaterial[J]. Laser & Optoelectronics Progress, 55, 041602(2018).

    [29] Xu Z H. Research and design of terahertz metamaterials based on graphene[D], 11-12(2019).

    [30] Bilal R M H, Baqir M A, Choudhury P K et al. On the specially designed fractal metasurface-based dual-polarization converter in the THz regime[J]. Results in Physics, 19, 103358(2020).

    [31] Zhou Y X, Huang Y Y, Jin Y P et al. Terahertz properties of graphene and graphene-based terahertz devices[J]. Chinese Journal of Lasers, 46, 0614011(2019).

    Nanning Yi, Rong Zong, Jiang Gong, Rongrong Qian, Tao Duan. Broadband Tunable Terahertz Polarization Converter Based on Hollow Butterfly-Shape Graphene[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1716001
    Download Citation