• Photonic Sensors
  • Vol. 11, Issue 3, 341 (2021)
Juan LIU, Chaowei LUO, Hua YANG, Zhen YI, Bin LIU*, Xingdao HE, and and Qiang WU
Author Affiliations
  • Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China
  • show less
    DOI: 10.1007/s13320-020-0596-z Cite this Article
    Juan LIU, Chaowei LUO, Hua YANG, Zhen YI, Bin LIU, Xingdao HE, and Qiang WU. Mach-Zehnder Interferometer for High Temperature (1 000 ℃) Sensing Based on a Few-Mode Fiber[J]. Photonic Sensors, 2021, 11(3): 341 Copy Citation Text show less
    References

    [1] F. T. S. Yu, P. B. Ruffin, and S. Yin, “Fiber optic sensors,” New York: CRC Press, 2008.

    [2] D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, et al., “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Optics Letters, 2015, 40(17): 4166–4169.

    [3] W. Yu, T. Lang, J. Bian, and W. Kong, “Label-free fiber optic biosensor based on thin-core modal interferometer,” Sensors and Actuators B: Chemical, 2016, 228(2): 322–329.

    [4] G. Brambilla, “High-temperature fibre Bragg grating thermometer,” Electronics Letters, 2002, 38(17): 954–956.

    [5] S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” Journal of Lightwave Technology, 1997, 15(8): 1470–1477.

    [6] S. Li-Yang, T. Wang, J. Canning, K. Cook, and T. Hwa-Yaw, “Bulk regeneration of optical fiber Bragg gratings,” Applied Optics, 2012, 51(30): 7165–7169.

    [7] J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 ℃,” Optics Letters, 2014, 39(15): 4309–4312.

    [8] J. Zhu, A. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sensors Journal, 2010, 10(9): 1415–1418.

    [9] Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Optics Letters, 2013, 38(3): 335–337.

    [10] Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Optics Letters, 2013, 38(22): 4609–4612.

    [11] P. Rugeland and W. Margulis, “Revisiting twin-core fiber sensors for high-temperature measurements,” Applied Optics, 2012, 51(25): 6227–6232.

    [12] G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ℃,” Optics Express, 2009, 17(24): 21551–21559.

    [13] C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Optics Letters, 2011, 36(3): 412–414.

    [14] M. Janik, M. Koba, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period grating and micro-cavity in-line Mach-Zehnder interferometer for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), Korea, April 24–28, 2017, pp. 1–4.

    [15] Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Applied Optics, 2007, 46(13): 2516–2519.

    [16] D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, et al., “Hollow core fiber based interferometer for high-temperature (1 000℃) measurement,” Journal of Lightwave Technology, 2017, 36(9): 1583–1590.

    [17] X. Zhan, Y. P. Liu, M. Tang, L. Ma, R. X. Wang, L. Duan, et al., “Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination,” Optics Express, 2018, 26(12): 15332–15342.

    [18] C. X. Lu, J. Su, X. P. Dong, L. H. Lu, T. Sun, and K. T. V. Grattan, “Studies on temperature and strain sensitivities of a few-mode critical wavelength fiber optic sensor,” Journal of Lightwave Technology, 2018, 19(5): 1794–1801.

    [19] T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, et al., “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Optics Communications, 2014, 324: 53–57.

    [20] L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Optics Express, 2008, 16(15): 11369–11375.

    [21] B. Dong, D. Zhou, L. Wei, W. Liu, and J. Li, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Optics Express, 2008, 16(23): 19291–19296.

    [22] D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1 000 ℃ of silica fibre Bragg grating made with ultrafast laser radiation,” Measurement Science and Technology, 2006, 17(5): 1009–1013.

    Juan LIU, Chaowei LUO, Hua YANG, Zhen YI, Bin LIU, Xingdao HE, and Qiang WU. Mach-Zehnder Interferometer for High Temperature (1 000 ℃) Sensing Based on a Few-Mode Fiber[J]. Photonic Sensors, 2021, 11(3): 341
    Download Citation