• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20210734 (2021)
Qingyu Li1、2, Zhijie Tan1, Hong Yu1、3, and Shensheng Han1、3
Author Affiliations
  • 1Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • show less
    DOI: 10.3788/IRLA20210734 Cite this Article
    Qingyu Li, Zhijie Tan, Hong Yu, Shensheng Han. Research on Compton scattering noise in the X-ray Fourier-transform ghost imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210734 Copy Citation Text show less
    References

    [1] Y G Shi. A glimpse of structural biology through x-ray crystallography. Cell, 159, 995-1014(2014).

    [2] D V Kosynkin, A L Higginbotham, A Sinitskii. Longitudinal unzipping of carbon nanotubesto form graphene nanoribbons. Nature, 458, 872-876(2009).

    [3] B Fleury, R Cortes-Huerto, O Taché, et al. Gold nanoparticle internal structure and symmetry probed by unified small-angle x-ray scattering and x-ray diffraction coupled with molecular dynamics analysis. Nano Letters, 15, 6088-6094(2015).

    [4] T J Davis, T E Gureyev, A W Stevenson. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature, 373, 595-598(1995).

    [5] A Zamir, P C Diemoz, F A Vittoria, et al. Edge illumination x-ray phase tomography of multi-material samples using a single-image phase retrieval algorithm. Optics Express, 25, 11984(2017).

    [6] M Endrizzi. X-ray phase-contrast imaging. Nuclear Instruments and Methods in Physics Research A, 878, 88-98(2018).

    [7] J W Miao, P Charalambous, J Kirz, et al. Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342-344(1999).

    [8] P Thibault, M Dierolf, A Menzel, et al. High-resolution scanning X-ray diffraction microscopy. Science, 321, 379-382(2008).

    [9] P Sidorenko, O Cohen, P A S Idorenko, et al. Single-shot ptychography. Optica, 3, 9-14(2016).

    [10] H Yu, R H Lu, S S Han, et al. Fourier-transform ghost imaging with hard X rays. Physical Review Letters, 117, 113901(2016).

    [11] D Pelliccia, A Rack, M Scheel, et al. Experimental x-ray ghost imaging. Physical Review Letters, 117, 113902(2016).

    [12] A X Zhang, Y H He, L A Wu, et al. Tabletop X-ray ghost imaging with ultra-low radiation. Optica, 5, 374-377(2018).

    [13] J Cheng, S S Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Physical Review Letters, 92, 093903(2004).

    [14] Z J Tan, H Yu, S C Yang, et al. Fourier-transform ghost imaging with polychromatic light. Journal of Modern Optics, 67, 1247-1253(2020).

    [15] Z J Tan, H Yu, R H Lu, et al. Non-locally coded Fourier-transform ghost imaging. Optics Express, 27, 2937-2948(2019).

    [16] Wu Z H , Zhao G Q, Lu F Q. Experimental Methods f Nuclear Physics[M]. Beijing: Atomic Energy Press, 1996. (in Chinese)

    [17] R E Meyers, K S Deacon, Y Shih. Turbulence-free ghost imaging. Applied Physics Letters, 98, 041801(2011).

    [18] S Agostinelli, J Allison, K Amako. GEANT4: A simulation toolkit. Nuclear Instruments and Methods in Physics Research. A, 506, 250-303(2003).

    [19] N Tian, Q Guo, A Wang, et al. Fluorescence ghost imaging with pseudothermal light. Optics Letters, 36, 3302-3304(2011).

    [20] M Chen. Ghost imaging based on sparse array pseudothermal light system. Acta Optica Sinica, 32, 503001-503419(2012).

    [21] R Schneider, T Mehringer, G Mercurio, et al. Quantum imaging with incoherently scattered light from a free-electron laser. Nature Physics, 14, 126-129(2018).

    [22] Y Y Kim, L Gelisio, G Mercurio, et al. Ghost imaging at an XUV free-electron laser. Physical Review A, 101, 013820(2020).

    [23] Physics Society of High Energy. Geant4 User Documentation[EBOL].(20211210)https:geant4.web.cern.chsupptuser_documentation.

    [24] J Allison, K Amako, J Apostolakis. Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research A, 835, 186-225(2016).

    [25] J Allison, K Amako, J Apostolakis. Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53, 270-278(2006).

    [26] Biggs F, Lighthill R. Analytical approximations f xray cross sections III[R]. New Mexico: Sia Labaty, 1988.

    [27] Bn M. Atomic Physics[M]. Glasgow: Blackie Sons Ltd, 1969.

    [28] J H Hubbell, H A Gimm. Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV‐100 GeV photons in elements Z=1 to 100. Journal of Physical and Chemical Reference Data, 9, 1023-1148(1980).

    [29] H L Liu, J Cheng, S S Han. Ghost imaging in Fourier space. Journal of Applied Physics, 102, 103102(2007).

    [30] Lu X T, Jiang D X, Ye Y L. Nuclear Physics[M]. Beijing: Atomic Energy Press, 2000. (in Chinese)

    Qingyu Li, Zhijie Tan, Hong Yu, Shensheng Han. Research on Compton scattering noise in the X-ray Fourier-transform ghost imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210734
    Download Citation