[2] K. Morioka, K. Mori, S. Kawanishi et al.. Pulse-width tunable, self-frequency conversion of short optical pulses over 200 nm based on supercontinuum generation[J]. Electron. Lett., 1994, 30(23): 1960~1963
[3] T. Okuno, M. Onishi, M. Nishimura. Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber[J]. IEEE Photonics Technology Letters, 1998, 10(1): 72~74
[4] H. Sotobayashi, K. Kitayama. 325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fiber with pulse compression technique[J]. Electron. Lett., 1998, 34(13): 1336~1337
[5] F. Futami, Y. Takushima, K. Kikuchi. Generation of wideband and flat supercontinuum over a 280-nm spectral range from a dispersion-flattened optical fiber with normal group-velocity dispersion[J]. Ieice Trans. Electron., 1999, E82-C(8): 1531~1535
[6] K. Mori, H. Takara, S. Kawanishi. Analysis and design of supercontinuum pulse generation in a single-mode optical fiber[J]. J. Opt. Soc. Am. (B), 2001, 18(12): 1780~1792
[7] K. Mori, H. Takara, S. Kawanishi et al.. Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile[J]. Electron. Lett., 1997, 33(2): 1806~1807
[8] Agrawl G. P.. Nonlinear Fiber Optics[M]. New York: Academic Press, 1995
[9] Pierre Luc Francois. Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain[J]. J. Opt. Soc. Am. (B), 1991, 8(2): 276
[10] Xu Wencheng, Jin Wei, Xu Yongzhao et al.. Enhancement of supercontinuum spectrum generation in a dispersion-decreasing fibre with a concave dispersion profile[J]. Chin. Phys. Lett., 2004, 21(6): 1089~1091