• Acta Optica Sinica (Online)
  • Vol. 1, Issue 3, 0314001 (2024)
Shuming Yang*, Xing Qu, and Chunyang Ma
Author Affiliations
  • State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University,Xi’an 710054, Shaanxi , China
  • show less
    DOI: 10.3788/AOSOL240432 Cite this Article Set citation alerts
    Shuming Yang, Xing Qu, Chunyang Ma. Review of Event Camera-Based Visual Measurement (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(3): 0314001 Copy Citation Text show less
    References

    [1] Tang H B, Chao Y, Liu W H et al. Review of measurement methods of large-size parts based on machine vision[J]. Electronic Measurement Technology, 44, 33-40(2021).

    [2] Zhang Z H, Liu W, Liu G D et al. Overview of the development and application of 3D vision measurement technology[J]. Journal of Image and Graphics, 26, 1483-1502(2021).

    [3] Wei Z Z, Feng G K, Zhou D Y et al. A review of position and orientation visual measurement methods and applications[J]. Laser & Optoelectronics Progress, 60, 0312010(2023).

    [4] Zhang G F, Yang S M, Hu P Y et al. Advances and prospects of vision-based 3D shape measurement methods[J]. Machines, 10, 124(2022).

    [5] Liu X S, Xu J T. Design and development of an integration system for high precision manufacturing[J]. Modular Machine Tool & Automatic Manufacturing Technique, 62-65(2021).

    [6] Zhou M F, Wang Z Y, Yang J F. A survey of three-dimensional point cloud classification methods applied to unmanned vehicles[J]. Chinese Journal of Sensors and Actuators, 35, 931-937(2022).

    [7] Zou H D, Chang M, Guo J K et al. Review of event-based visual SLAM[J]. Unmanned Systems Technology, 6, 59-80(2023).

    [9] Brandli C, Berner R, Yang M H et al. A 240×180 130 dB 3 µs latency global shutter spatiotemporal vision sensor[J]. IEEE Journal of Solid-State Circuits, 49, 2333-2341(2014).

    [10] Finateu T, Niwa A. Matolin D[C], 112-114(2020).

    [11] Gallego G, Delbrück T, Orchard G et al. Event-based vision: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 154-180(2022).

    [12] Lü Y Y, Liu Z H, Qiao W L et al. Analysis of detection capability of space target based on event camera[J]. Acta Photonica Sinica, 52, 0211001(2023).

    [13] Son B, Suh Y, Kim S et al. 4.1 A 640×480 dynamic vision sensor with a 9 µm pixel and 300 Meps address-event representation[C], 66-67(2017).

    [14] Suh Y. Choi S[C]. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), A 1280-960(4).

    [15] Posch C, Matolin D, Wohlgenannt R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS[J]. IEEE Journal of Solid-State Circuits, 46, 259-275(2011).

    [16] Tedaldi D, Gallego G, Mueggler E et al. Feature detection and tracking with the dynamic and active-pixel vision sensor (DAVIS)[C](2016).

    [17] Litzenberger M, Kohn B, Belbachir A N et al. Estimation of vehicle speed based on asynchronous data from a silicon retina optical sensor[C], 653-658(2006).

    [18] Lagorce X, Meyer C, Ieng S H et al. Asynchronous event-based multikernel algorithm for high-speed visual features tracking[J]. IEEE Transactions on Neural Networks and Learning Systems, 26, 1710-1720(2015).

    [19] Vasco V, Glover A, Bartolozzi C. Fast event-based Harris corner detection exploiting the advantages of event-driven cameras[C], 4144-4149(2016).

    [20] Harris C, Stephens M. A combined corner and edge detector[C]. Manchester. Alvey Vision Club, 1-6(1988).

    [21] Glover A, Bartolozzi C. Event-driven ball detection and gaze fixation in clutter[C], 2203-2208(2016).

    [22] Clady X, Maro J M, Barré S et al. A motion-based feature for event-based pattern recognition[J]. Frontiers in Neuroscience, 10, 594(2017).

    [23] Everding L, Conradt J. Low-latency line tracking using event-based dynamic vision sensors[J]. Frontiers in Neurorobotics, 12, 4(2018).

    [24] Sironi A, Brambilla M, Bourdis N et al. HATS: histograms of averaged time surfaces for robust event-based object classification[C], 1731-1740(2018).

    [25] Ni Z J, Bolopion A, Agnus J et al. Asynchronous event-based visual shape tracking for stable haptic feedback in microrobotics[J]. IEEE Transactions on Robotics, 28, 1081-1089(2012).

    [26] Kogler J, Sulzbachner C, Humenberger M et al. Address-event based stereo vision with bio-inspired silicon retina imagers[M]. Advances in theory and applications of stereo vision, 165-188(2011).

    [27] Cook M, Gugelmann L, Jug F et al. Interacting maps for fast visual interpretation[C], 770-776(2011).

    [28] Bardow P, Davison A J, Leutenegger S. Simultaneous optical flow and intensity estimation from an event camera[C], 884-892(2016).

    [29] Barua S, Miyatani Y, Veeraraghavan A. Direct face detection and video reconstruction from event cameras[C](2016).

    [30] Liu S Y, Dragotti P L. Sensing diversity and sparsity models for event generation and video reconstruction from events[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 12444-12458(2023).

    [31] Zheng Y J, Zheng L X, Yu Z F et al. Capture the moment: high-speed imaging with spiking cameras through short-term plasticity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 8127-8142(2023).

    [32] Gao Y, Li S Q, Li Y P et al. SuperFast: 200× video frame interpolation via event camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 7764-7780(2023).

    [33] Han J, Yang Y X, Duan P Q et al. Hybrid high dynamic range imaging fusing neuromorphic and conventional images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 8553-8565(2023).

    [34] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334(2000).

    [35] Ha H, Perdoch M, Alismail H et al. Deltille grids for geometric camera calibration[C], 5354-5362(2017).

    [36] Schöps T, Larsson V, Pollefeys M et al. Why having 10,000 parameters in your camera model is better than twelve[C], 2532-2541(2020).

    [37] Heikkila J. Geometric camera calibration using circular control points[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1066-1077(2000).

    [38] Cui J S, Huo J, Yang M. The high precision positioning algorithm of circular landmark center in visual measurement[J]. Optik, 125, 6570-6575(2014).

    [39] Cui J S, Huo J, Yang M. The circular mark projection error compensation in camera calibration[J]. Optik, 126, 2458-2463(2015).

    [40] Bu L B, Huo H T, Liu X Y et al. Concentric circle grids for camera calibration with considering lens distortion[J]. Optics and Lasers in Engineering, 140, 106527(2021).

    [41] Domínguez-Morales M J, Jiménez-Fernández Á, Jiménez-Moreno G et al. Bio-inspired stereo vision calibration for dynamic vision sensors[J]. IEEE Access, 7, 138415-138425(2019).

    [42] Qu X, Hu P Y, Deng H W et al. Accurate dynamic vision system calibration using circular control points[J]. Optics and Lasers in Engineering, 168, 107668(2023).

    [43] Muglikar M, Gehrig M, Gehrig D et al. How to calibrate your event camera[C], 1403-1409(2021).

    [44] Bai L F, Pan B Y, Zhang L. Application of 3D laser scanning in digital mine[J]. Science of Surveying and Mapping, 38, 178-179(2013).

    [45] Feng N, Tong X. Research on three-dimensional measurement method based on single-line structured light[J]. Modern Information Technology, 8, 55-59(2024).

    [46] Zhang S. High-speed 3D shape measurement with structured light methods: a review[J]. Optics and Lasers in Engineering, 106, 119-131(2018).

    [47] Yang X J, Liao Q M, Hu X W et al. SEpi-3D: soft epipolar 3D shape measurement with an event camera for multipath elimination[J]. Optics Express, 31, 13328-13341(2023).

    [48] Wang T, Yang S M, Li S S et al. Error analysis and compensation of galvanometer laser scanning measurement system[J]. Acta Optica Sinica, 40, 2315001(2020).

    [49] Matsuda N, Cossairt O, Gupta M. MC3D: motion contrast 3D scanning[C](2015).

    [50] Brandli C, Mantel T A, Hutter M et al. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor[J]. Frontiers in Neuroscience, 7, 275(2014).

    [51] Gao W. Flexible method for structured light system calibration[J]. Optical Engineering, 47, 083602(2008).

    [52] Zappa E, Busca G. Fourier-transform profilometry calibration based on an exhaustive geometric model of the system[J]. Optics and Lasers in Engineering, 47, 754-767(2009).

    [53] Li B W, Karpinsky N, Zhang S. Novel calibration method for structured-light system with an out-of-focus projector[J]. Applied Optics, 53, 3415-3426(2014).

    [54] Huang Z R, Xi J T, Yu Y G et al. Accurate projector calibration based on a new point-to-point mapping relationship between the camera and projector images[J]. Applied Optics, 54, 347-356(2015).

    [55] Legarda-Sáenz R, Bothe T, Jüptner W P. Accurate procedure for the calibration of a structured light system[J]. Optical Engineering, 43, 464-471(2004).

    [56] Mangalore A R, Seelamantula C S, Thakur C S. Neuromorphic fringe projection profilometry[J]. IEEE Signal Processing Letters, 27, 1510-1514(2020).

    [57] Huang X Y, Zhang Y Y, Xiong Z W. High-speed structured light based 3D scanning using an event camera[J]. Optics Express, 29, 35864-35876(2021).

    [58] Wang G J, Feng C C, Hu X W et al. Temporal matrices mapping-based calibration method for event-driven structured light systems[J]. IEEE Sensors Journal, 21, 1799-1808(2021).

    [59] Muglikar M, Gallego G, Scaramuzza D. ESL: event-based structured light[C], 1165-1174(2021).

    [60] Li Y H, Jiang H, Xu C et al. Event-driven fringe projection structured light 3-D reconstruction based on time-frequency analysis[J]. IEEE Sensors Journal, 24, 5097-5106(2024).

    [61] Bian Z C, Guo C F, Jiang S W et al. Autofocusing technologies for whole slide imaging and automated microscopy[J]. Journal of Biophotonics, 13, e202000227(2020).

    [62] Brenner J F, Dew B S, Horton J B et al. An automated microscope for cytologic research a preliminary evaluation[J]. The Journal of Histochemistry and Cytochemistry, 24, 100-111(1976).

    [63] Yeo T, Ong S, Jayasooriah et al. Autofocusing for tissue microscopy[J]. Image and Vision Computing, 11, 629-639(1993).

    [64] Subbarao M, Choi T S, Nikzad A. Focusing techniques[J]. Optical Engineering, 32, 2824-2836(1993).

    [65] Vollath D. Automatic focusing by correlative methods[J]. Journal of Microscopy, 147, 279-288(1987).

    [66] Firestone L, Cook K, Culp K et al. Comparison of autofocus methods for automated microscopy[J]. Cytometry, 12, 195-206(1991).

    [67] Santos A, de solórzano C O, Vaquero J J et al. Evaluation of autofocus functions in molecular cytogenetic analysis[J]. Journal of Microscopy, 188, 264-272(1997).

    [68] Ge Z, Wei H Y, Xu F et al. Millisecond autofocusing microscopy using neuromorphic event sensing[J]. Optics and Lasers in Engineering, 160, 107247(2023).

    [69] Qu X, Ma C Y, Hu W B et al. A robust autofocusing method for microscopic imaging based on an event camera[J]. Optics and Lasers in Engineering, 175, 108025(2024).

    Shuming Yang, Xing Qu, Chunyang Ma. Review of Event Camera-Based Visual Measurement (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(3): 0314001
    Download Citation