• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 5, 736 (2022)
Yulong ZHONG1、2、* and Tingqing CHENG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.05.006 Cite this Article
    ZHONG Yulong, CHENG Tingqing. Experimental study of LD side-pumped Tm:YAG electro-optically Q-switched laser[J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 736 Copy Citation Text show less
    References

    [1] Ishii S, Mizutani K, Fukuoka H, et al. Coherent 2 μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device[J]. Applied Optics, 2010, 49(10): 1809-1817.

    [2] Yu J, Trieu B C, Modlin E A, et al. 1 J/pulse Q-switched 2 μm solid-state laser[J]. Optics Letters, 2006, 31(4): 462-464.

    [3] Scholle K, Lamrini S, Koopmann P, et al. μm Laser Sources and Their Possible Applications[M]. Frontiers in Guided Wave Optics Optoelectronics, 2010: 471-499.

    [4] Chu Y F, Liu D, Wang Z Z, et al. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600.

    [5] Lippert E, Rustad G, Arisholm G, et al. High power and efficient long wave IR ZnGeP2 parametric oscillator[J]. Optics Express, 2008, 16(18): 13878-13884.

    [6] Nieuwenhuis A F, Lee C J, van der Slot P J M, et al. High-efficiency mid-infrared ZnGeP2 optical parametric oscillator directly pumped by a lamp-pumped, Q-switched CrTmHo:YAG laser[J]. Optics Letters, 2008, 33(1): 52-54.

    [7] Buryy O A, Sugak D Y, Ubizskii S B, et al. The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers[J]. Applied Physics B, 2007, 88(3): 433-442.

    [8] Gao W L, Ma J, Xie G Q, et al. Highly efficient 2 μm Tm:YAG ceramic laser[J]. Optics Letters, 2012, 37(6): 1076-1078.

    [9] Eichhorn M. Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions[J]. Applied Physics B, 2008, 93(2): 269-316.

    [10] Li Y F, Yao B Q, Wang Y Z, et al. High efficient diode-pumped Tm:YAP laser at room temperature[J]. Chinese Optics Letters, 2007, 5(5): 286-287.

    [11] Gao C Q, Lin Z F, Wang R, et al. Experimental investigation of pulse diodes side-pumped 2 μm Tm:YAG lasers[J]. Laser Physics, 2011, 21(1): 70-73.

    [12] Yumoto M, Saito N, Urata Y, et al. 128 mJ/pulse, laser-diode-pumped, Q-switched Tm:YAG laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 364-368.

    [13] Liu C, Yang K, Zhao S, et al. 88 ns multi-millijoule LiNbO3 electro-optically Q-switched Tm:LuAG laser[J]. Optics Communications, 2015, 355: 167-171.

    [14] Jin L, Liu P, Huang H T, et al. Short pulse diode-pumped Tm:YAG slab laser electro-optically Q-switched by RbTiOPO4 crystal[J]. Optical Materials, 2016, 60: 350-354.

    [15] Guo L, Zhao S Z, Li T, et al. Diode-wing-pumped electro-optically Q-switched 2 μm laser with pulse energy scaling over ten millijoules[J]. Optics Express, 2018, 26(13): 17731-17738.

    [16] Ma S H, Lu D Z, Yu H H, et al. Langasite electro-optic Q-switched 2 μm laser with high repetition rates and reduced driven voltages[J]. Optics Communications, 2019, 447: 13-17.

    ZHONG Yulong, CHENG Tingqing. Experimental study of LD side-pumped Tm:YAG electro-optically Q-switched laser[J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 736
    Download Citation