• Journal of Inorganic Materials
  • Vol. 36, Issue 12, 1305 (2021)
Yuwei WANG*, Jiajie CHEN, Zhengfang TIAN, Min ZHU, and Yufang ZHU
DOI: 10.15541/jim20210157 Cite this Article
Yuwei WANG, Jiajie CHEN, Zhengfang TIAN, Min ZHU, Yufang ZHU. Potassium Ferrate-loaded Porphyrin-based (VI) Metal-organic Frameworks for Combined Photodymanic and Chemodynamic Tumor Therapy[J]. Journal of Inorganic Materials, 2021, 36(12): 1305 Copy Citation Text show less
References

[1] CHUANG LIU, JIE XING, UDOCHUKWU AKAKURU OZIOMA et al. Nanozymes-engineered metal-organic frameworks for catalytic cascades-enhanced synergistic cancer therapy. Nano Letters, 19, 5674-5682(2019). https://pubs.acs.org/doi/10.1021/acs.nanolett.9b02253

[2] ZHONGMIN TANG, YTANTAN LIU, MINGYUAN HE et al. Chemodynamic therapy: tumor microenvironment-mediated fenton and fenton-like reaction. Angewandte Chemie International Edition, 58, 946-956(2019). https://onlinelibrary.wiley.com/toc/15213773/58/4

[3] HUAN MIN, JING WANG, YINGQIU QI et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Advanced Materials, 31, 1808200(2019). https://onlinelibrary.wiley.com/toc/15214095/31/15

[4] XINXIN DAI, TING DU, KAI HAN. Engineering nanoparticles for optimized photodynamic therapy. ACS Biomaterials Science & Engineering, 5, 6342-6354(2019).

[5] MENGYU CHANG, MAN WANG, MEIFANG WANG et al. A multifunctional cascade bioreactor based on hollow structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Advanced Materials, 31, 1905271(2019). https://onlinelibrary.wiley.com/toc/15214095/31/51

[6] JONAS SCHUBERT, CARMEN RADEKE, ANDREAS FERY et al. The role of pH, metal ions and their hydroxides in charge reversal of protein-coated nanoparticles. Physical Chemistry Chemical Physics, 21, 11011-11018(2019). http://xlink.rsc.org/?DOI=C8CP05946B

[7] JINYUE ZENG, MINGKANG ZHANG, MENGYUN PENG et al. Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/ chemotherapy of tumor. Advanced Functional Materials, 28, 1705451(2018). http://doi.wiley.com/10.1002/adfm.v28.8

[8] JIAJIE CHEN, JIAXING LIU, YAPING HU et al. Metal-organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release. Science and Technology of Advanced Materials, 20, 1043-1054(2019). https://www.tandfonline.com/doi/full/10.1080/14686996.2019.1682467

[9] JIAJIE CHEN, YUFANG ZHU, CHENGTIE WU et al. Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 49, 9057-9094(2020). http://xlink.rsc.org/?DOI=D0CS00607F

[10] ZHENG WANG, FAN ZHANG, DAN SHAO et al. Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Advanced Science, 6, 1901690(2019). https://onlinelibrary.wiley.com/toc/21983844/6/22

[11] YA-RU ZHANG, RUN LIN, HONG-JUN LI et al. Strategies to improve tumor penetration of nano-medicines through nanoparticle design. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 11, e1519(2019).

[12] MINAKSHI PRASAD, P LAMBE UPENDRA, BASANTI BRAR et al. Nanotherapeutics: an insight into healthcare and multi- dimensional applications in medical sector of the modern world. Biomedicine & Pharmacotherapy, 97, 1521-1537(2018). https://linkinghub.elsevier.com/retrieve/pii/S0753332217343925

[13] KUANGDA LU, THEIET AUNG, NINING GUO et al. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Advanced Materials, 30, 1707634(2018). http://doi.wiley.com/10.1002/adma.v30.37

[14] FANGXIN MAO, LING WEN, CAIXIA SUN et al. Ultrasmall biocompatible Bi2Se3 nanodots for multimodal imaging-guided synergistic radiophotothermal therapy against cancer. ACS Nano, 10, 11145-11155(2016). https://pubs.acs.org/doi/10.1021/acsnano.6b06067

[15] CHUANDE WU, MIN ZHAO. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis. Advanced Materials, 29, 1605446(2017). http://doi.wiley.com/10.1002/adma.v29.14

[16] JIAJIE CHEN, SHIYANG LIN, DOUDOU ZHAO et al. Palladium nanocrystals-engineered metalorganic frameworks for enhanced tumor inhibition by synergistic hydrogen/photodynamic therapy. Advanced Functional Materials, 31, 2006853(2020). https://onlinelibrary.wiley.com/toc/16163028/31/4

[17] SHUNZHI WANG, MICHAEL MCGUIRK C, ANDREA D’AQUINO et al. Metal-organic framework nanoparticles. Advanced Materials, 30, 1800202(2018). https://onlinelibrary.wiley.com/toc/15214095/30/37

[18] HUANG CHEN, LINGYU ZHANG, SONG LIU et al. Double enhanced energy storage density via polarization gradient design in ferroelectric poly(vinylidene fluoride)-based nanocomposites. Chemical Engineering Journal, 411, 128585(2021). https://linkinghub.elsevier.com/retrieve/pii/S1385894721001844

[19] YAN ZHANG, FAMING WANG, CHAOQUN LIU et al. Nanozymes decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano, 12, 651-661(2018). https://pubs.acs.org/doi/10.1021/acsnano.7b07746

[20] JINGKE FU, TAO LI, YINGCHUN ZHU et al. Ultrasound- activated oxygen and ROS generation nanosystem systematically modulates tumor microenvironment and sensitizes sonodynamic therapy for hypoxic solid tumors. Advanced Functional Materials, 29, 1906195(2019). https://onlinelibrary.wiley.com/toc/16163028/29/51

[21] S NOVIKOV ALEXANDER, L KUZNETSOV MAXIM, L POMBEIRO ARMANDO J et al. Generation of HO• radical from hydrogen peroxide catalyzed by aqua complexes of the group III metals [M(H2O)n]3+ (M=Ga, In, Sc, Y, or La): a theoretical study. ACS Catalysis, 3, 1195-1208(2013). https://pubs.acs.org/doi/10.1021/cs400155q

[22] WENXIN LIN, JIANQIU GONG, LIQUAN FANG et al. A photodynamic system based on endogenous bioluminescence for in vitro anticancer studies. Zeitschrift fur Anorganische und Allgemeine Chemie, 645, 1161-1164(2019). https://onlinelibrary.wiley.com/doi/10.1002/zaac.201900144

[23] JIHYE PARK, QIN JIANG, DAWEI FENG et al. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. Journal American Chemical Society, 138, 3518-3525(2016). https://pubs.acs.org/doi/10.1021/jacs.6b00007

[24] WEI ZHAO, YONGMEI ZHAO, QINGFU WANG et al. Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives. Small, 15, 1903060(2019). https://onlinelibrary.wiley.com/toc/16136829/15/45

[25] I ElSHAMI FAWZYA, M RAMADAN ABD EL-MOTALEB, M IBRAHIM MOHAMED et al. Metformin containing nickel (II) complexes: synthesis, structural characterization, binding and kinetic interactions with BSA, antibacterial and in-vitro cytotoxicity studies. Applied Organometallic Chemistry, 34, e5437(2020).

[26] JIN NIU, JINGJING LIANG, ANG GAO et al. Micropore-confined amorphous SnO2 subnanoclusters as robust anode materials for Na-ion capacitors. Journal of Materials Chemistry A, 7, 21711-21721. http://xlink.rsc.org/?DOI=C9TA06964J

[27] BENQING ZHOU, JUN SONG, MENG WANG et al. BSA- bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy. Nanoscale, 10, 21640-21647(2018). http://xlink.rsc.org/?DOI=C8NR05323E

[28] WEI LIU, YONGMEI WANG, YUHAO LI et al. Fluorescent imaging-guided chemotherapy-and photodynamic dual therapy with nanoscale porphyrin metal-organic framework. Small, 13, 1603459(2017). https://onlinelibrary.wiley.com/doi/10.1002/smll.201603459

[29] ARPITA SHOME, MAJEED RATHER ADIL, UTTAM MANNA. Chemically reactive protein nanoparticles for synthesis of a durable and deformable superhydrophobic material. Nanoscale Advances, 1, 1746-1753(2019). http://xlink.rsc.org/?DOI=C9NA00031C

[30] YUAN ZHANG, YANG XING, MING XIAN et al. Folate- targeting and bovine serum albumin-gated mesoporous silica nanoparticles as a redox-responsive carrier for epirubicin release. New Journal of Chemistry, 43, 2694-2701(2019). http://xlink.rsc.org/?DOI=C8NJ05476B

[31] MINGZHEN GUO, JIANAG HE, SHUANG MA et al. Determination of Hg2+ based on the selective enhancement of peroxidase mimetic activity of hollow porous gold nanoparticles. Nano Brief Reports and Reviews, 12, 1750050(2017).

[32] WEI FENG, XIUGUO HAN, RONGYAN WANG et al. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Advance Material, 31, 1805919(2019).

[33] YONGHE ZHANG, BEILEI WANG, RUIBO ZHAO et al. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Materials Science & Engineering C-Materials for Biological Application, 115, 111099(2020).

[34] GUNDYZ HANDE, KONLEMEN SAFACAN, AKKAYA EENGIN U. Singlet oxygen probes: diversity in signal generation mechanisms yields a larger color palette. Coordination Chemistry Reviews, 429, 213641(2021). https://linkinghub.elsevier.com/retrieve/pii/S0010854520308729

[35] SHENGYAN YIN, GUOSHENG SONG, YUE YANG et al. Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@metal-organic frameworks for enhanced photodynamic therapy. Advanced Functional Materials, 29, 2006853(2019).

[36] AVINASH BAJAJ, BAPPADITYA SAMANTA, HAOHENG YAN et al. Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. Journal of Materials Chenistry, 19, 6328-6331(2009).

[37] LISEN LIN, JIBIN SONG, LIANG SONG et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie- International Edition, 57, 4902-4906(2018). https://onlinelibrary.wiley.com/doi/10.1002/anie.201712027

[38] M TARPEY MARGARRT, IRWIN FRIDOVICH. Methods of detection of vascular reactive species nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circulation Research, 89, 224(2001). https://www.ahajournals.org/doi/10.1161/hh1501.094365

[39] MANIVANNAN ETHIRAJAN, YIHUI CHEN, PENNY JOSHI et al. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chemical Society Reviews, 40, 340-362(2011). http://xlink.rsc.org/?DOI=B915149B

[40] JIAJIE CHEN, YUFANG ZHU, STEFAN KASKEL. Porphyrin- based metal-organic frameworks for biomedical applications. Angewandte Chemie-International Edition, 60, 5010-5035(2020). https://onlinelibrary.wiley.com/toc/15213773/60/10

Yuwei WANG, Jiajie CHEN, Zhengfang TIAN, Min ZHU, Yufang ZHU. Potassium Ferrate-loaded Porphyrin-based (VI) Metal-organic Frameworks for Combined Photodymanic and Chemodynamic Tumor Therapy[J]. Journal of Inorganic Materials, 2021, 36(12): 1305
Download Citation