• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1916004 (2022)
Linjun Zhao1, Guoqing Zhang2、3、*, Dalin Zhang1, and Zhiwen Li4
Author Affiliations
  • 1College of Engineering and Technology, Nanchang Vocational University, Nanchang 330500, Jiangxi, China
  • 2Institute of Technological Sciences, Wuhan University, Wuhan 430072, Hubei, China
  • 3Shenzhen Research Institute, Wuhan University, Shenzhen 518057, Guangdong, China
  • 4School of Mechanical Engineering, Jiangxi Technical College of Manufacturing, Nanchang 330095, Jiangxi, China
  • show less
    DOI: 10.3788/LOP202259.1916004 Cite this Article Set citation alerts
    Linjun Zhao, Guoqing Zhang, Dalin Zhang, Zhiwen Li. Investigation of Spatter Characteristics in Selective Laser Melting Based on Maximum Entropy Threshold Segmentation Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1916004 Copy Citation Text show less
    References

    [1] Qin Y L, Sun B H, Zhang H et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field[J]. Chinese Journal of Lasers, 48, 1402002(2021).

    [2] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [3] Bahnini I, Rivette M, Rechia A et al. Additive manufacturing technology: the status, applications, and prospects[J]. The International Journal of Advanced Manufacturing Technology, 97, 147-161(2018).

    [4] Stampfl J, Hatzenbichler M. Additive manufacturing technologies[M]. CIRP encyclopedia of production engineering, 20-27(2014).

    [5] Liu A L, Sui C Y, Li F Z et al. Correlation between plasma characteristics and forming defects during laser additive manufacturing of ceramics[J]. Chinese Journal of Lasers, 47, 0602005(2020).

    [6] Khairallah S A, Anderson A T, Rubenchik A et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 108, 36-45(2016).

    [7] Liu Y, Yang Y Q, Mai S Z et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J]. Materials & Design, 87, 797-806(2015).

    [8] Zhang M J, Chen G Y, Zhou Y et al. Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate[J]. Applied Surface Science, 280, 868-875(2013).

    [9] Schweier M, Heins J F, Haubold M W et al. Spatter formation in laser welding with beam oscillation[J]. Physics Procedia, 41, 20-30(2013).

    [10] Wang D, Wu S B, Fu F et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design, 117, 121-130(2017).

    [11] Criales L E, Arısoy Y M, Lane B et al. Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis[J]. International Journal of Machine Tools and Manufacture, 121, 22-36(2017).

    [12] Wang D, Yang Y Q, Liu R C et al. Study on the designing rules and processability of porous structure based on selective laser melting (SLM)[J]. Journal of Materials Processing Technology, 213, 1734-1742(2013).

    [13] Grasso M, Demir A G, Previtali B et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume[J]. Robotics and Computer-Integrated Manufacturing, 49, 229-239(2018).

    [14] Craeghs T, Clijsters S, Yasa E et al. Determination of geometrical factors in layerwise laser melting using optical process monitoring[J]. Optics and Lasers in Engineering, 49, 1440-1446(2011).

    [15] Clijsters S, Craeghs T, Buls S et al. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system[J]. The International Journal of Advanced Manufacturing Technology, 75, 1089-1101(2014).

    [16] Liu T Y, Bao J S, Wang J L et al. Laser welding penetration state recognition method fused with timing information[J]. Chinese Journal of Lasers, 48, 0602119(2021).

    [17] Ren Y, Wu Q, Zou J L et al. Real-time monitoring of coaxial protection fiber laser welding of austenitic stainless steels[J]. Chinese Journal of Lasers, 44, 0502003(2017).

    [18] Han X, Zhao Y, Zou J L et al. Analysis of plume formation reasons in laser deep penetration welding based on visual observation[J]. Chinese Journal of Lasers, 47, 0602004(2020).

    [19] Gao X D, Wen Q, Katayama S. Analysis of high-power disk laser welding stability based on classification of plume and spatter characteristics[J]. Transactions of Nonferrous Metals Society of China, 23, 3748-3757(2013).

    [20] Haubold M W, Wulf L, Zaeh M F. Validation of a spatter detection algorithm for remote laser welding applications[J]. Journal of Laser Applications, 29, 022011(2017).

    [21] Lapointe S, Guss G, Reese Z et al. Photodiode-based machine learning for optimization of laser powder bed fusion parameters in complex geometries[J]. Additive Manufacturing, 53, 102687(2022).

    [22] Lott P, Schleifenbaum H, Meiners W et al. Design of an optical system for the in situ process monitoring of selective laser melting (SLM)[J]. Physics Procedia, 12, 683-690(2011).

    [23] Doubenskaia M, Pavlov M, Chivel Y. Optical system for on-line monitoring and temperature control in selective laser melting technology[J]. Key Engineering Materials, 437, 458-461(2010).

    [24] Berumen S, Bechmann F, Lindner S et al. Quality control of laser- and powder bed-based additive manufacturing (AM) technologies[J]. Physics Procedia, 5, 617-622(2010).

    [25] Chivel Y, Smurov I. On-line temperature monitoring in selective laser sintering/melting[J]. Physics Procedia, 5, 515-521(2010).

    [26] Fang Q H, Tan Z B, Li H et al. In-situ capture of melt pool signature in selective laser melting using U-Net-based convolutional neural network[J]. Journal of Manufacturing Processes, 68, 347-355(2021).

    [27] Andani M T, Dehghani R, Karamooz-Ravari M R et al. A study on the effect of energy input on spatter particles creation during selective laser melting process[J]. Additive Manufacturing, 20, 33-43(2018).

    [28] Repossini G, Laguzza V, Grasso M et al. On the use of spatter signature for in situ monitoring of laser powder bed fusion[J]. Additive Manufacturing, 16, 35-48(2017).

    [29] Tan Z B, Fang Q H, Li H et al. Neural network based image segmentation for spatter extraction during laser-based powder bed fusion processing[J]. Optics & Laser Technology, 130, 106347(2020).

    [30] Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 29, 273-285(1985).

    Linjun Zhao, Guoqing Zhang, Dalin Zhang, Zhiwen Li. Investigation of Spatter Characteristics in Selective Laser Melting Based on Maximum Entropy Threshold Segmentation Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1916004
    Download Citation