• Photonics Research
  • Vol. 10, Issue 8, B1 (2022)
Shi-Wen Xu1、†, Yu-Ming Wei1、†, Rong-Bin Su, Xue-Shi Li, Pei-Nian Huang, Shun-Fa Liu, Xiao-Ying Huang, Ying Yu, Jin Liu*, and Xue-Hua Wang
Author Affiliations
  • State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • show less
    DOI: 10.1364/PRJ.461034 Cite this Article Set citation alerts
    Shi-Wen Xu, Yu-Ming Wei, Rong-Bin Su, Xue-Shi Li, Pei-Nian Huang, Shun-Fa Liu, Xiao-Ying Huang, Ying Yu, Jin Liu, Xue-Hua Wang. Bright single-photon sources in the telecom band by deterministically coupling single quantum dots to a hybrid circular Bragg resonator[J]. Photonics Research, 2022, 10(8): B1 Copy Citation Text show less
    References

    [1] T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, A. Kuzmich. Quantum telecommunication based on atomic cascade transitions. Phys. Rev. Lett., 96, 093604(2006).

    [2] J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett., 96, 030404(2006).

    [3] S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Al-brecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett., 109, 147404(2012).

    [4] J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, P. Michler. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol., 14, 23-26(2019).

    [5] V. Ustinov, N. Maleev, A. Zhukov, A. Kovsh, A. Y. Egorov, A. Lunev, B. Volovik, I. Krestnikov, Y. G. Musikhin, N. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, D. Bimberg. InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Appl. Phys. Lett., 74, 2815-2817(1999).

    [6] T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, Y. Arakawa. Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities. Appl. Phys. Lett., 109, 132106(2016).

    [7] B. Alloing, C. Zinoni, V. Zwiller, L. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, E. Kapon. Growth and characterization of single quantum dots emitting at 1300 nm. Appl. Phys. Lett., 86, 101908(2005).

    [8] M. Benyoucef, M. Yacob, J. Reithmaier, J. Kettler, P. Michler. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl. Phys. Lett., 103, 162101(2013).

    [9] J. Wang, Y. Zhou, Z. Wang, A. Rasmita, J. Yang, X. Li, H. J. von Bardeleben, W. Gao. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun., 9, 4106(2018).

    [10] L. Spindlberger, A. Csóré, G. Thiering, S. Putz, R. Karhu, J. Hassan, N. Son, T. Fromherz, A. Gali, M. Trupke. Optical properties of vanadium in 4H silicon carbide for quantum technology. Phys. Rev. Appl., 12, 014015(2019).

    [11] Z. Mu, A. Rasmita, J. Yang, X. Li, W. Gao. Room-temperature solid-state quantum emitters in the telecom range. Adv. Quantum Technol., 4, 2100076(2021).

    [12] X. He, N. F. Hartmann, X. Ma, Y. Kim, R. Ihly, J. L. Blackburn, W. Gao, J. Kono, Y. Yomogida, A. Hirano, T. Tanaka, H. Kataura, H. Htoon, S. K. Doorn. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics., 11, 577-582(2017).

    [13] X. Ma, N. F. Hartmann, J. K. Baldwin, S. K. Doorn, H. Htoon. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotechnol., 10, 671-675(2015).

    [14] X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, J.-W. Pan. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys., 8, 517-521(2012).

    [15] J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, H. Kimble. Deterministic generation of single photons from one atom trapped in a cavity. Science, 303, 1992-1994(2004).

    [16] C. I. Osorio, N. Sangouard, R. T. Thew. On the purity and indistinguishability of down-converted photons. J. Phys. B, 46, 055501(2013).

    [17] P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol., 12, 1026-1039(2017).

    [18] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett., 116, 020401(2016).

    [19] N. Somaschi, V. Giesz, L. De Santis, J. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, P. Senellart. Near-optimal single-photon sources in the solid state. Nat. Photonics., 10, 340-345(2016).

    [20] Y.-M. He, J. Liu, S. Maier, M. Emmerling, S. Gerhardt, M. Davanço, K. Srinivasan, C. Schneider, S. Höfling. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica, 4, 802-808(2017).

    [21] S. Liu, Y. Wei, X. Li, Y. Yu, J. Liu, S. Yu, X. Wang. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light Sci. Appl., 10, 158(2021).

    [22] M. Davanco, M. T. Rakher, D. Schuh, A. Badolato, K. Srinivasan. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl. Phys. Lett., 99, 041102(2011).

    [23] J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, X. Wang. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol., 14, 586-593(2019).

    [24] B. Chen, Z. He, Z.-J. Liu, Y.-K. Wang, Y.-N. Gao, I. Aharonovich, Z.-Q. Xu, J. Liu. Simultaneously enhanced linear and nonlinear photon generations from WS2 by using dielectric circular Bragg resonators. Nanophotonics, 9, 2587-2592(2020).

    [25] N. M. H. Duong, Z.-Q. Xu, M. Kianinia, R. Su, Z. Liu, S. Kim, C. Bradac, T. T. Tran, Y. Wan, L.-J. Li, A. Solntsev, J. Liu, I. Aharonovich. Enhanced emission from WSe2 monolayers coupled to circular Bragg gratings. ACS Photon., 5, 3950-3955(2018).

    [26] F. Liu, A. J. Brash, J. O’Hara, L. M. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, A. M. Fox. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol., 13, 835-840(2018).

    [27] M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett., 113, 093603(2014).

    [28] N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton. A bright and fast source of coherent single photons. Nat. Nanotechnol., 16, 399-403(2021).

    [29] M. Paul, F. Olbrich, J. Höschele, S. Schreier, J. Kettler, S. L. Portalupi, M. Jetter, P. Michler. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers. Appl. Phys. Lett., 111, 033102(2017).

    [30] M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, P. Michler. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm. Appl. Phys. Lett., 106, 122105(2015).

    [31] M. Anderson, T. Müller, J. Skiba-Szymanska, A. B. Krysa, J. Huwer, R. M. Stevenson, J. Heffernan, D. A. Ritchie, A. J. Shields. Coherence in single photon emission from droplet epitaxy and Stranski–Krastanov quantum dots in the telecom C-band. Appl. Phys. Lett., 118, 014003(2021).

    [32] A. Musiał, P. Holewa, P. Wyborski, M. Syperek, A. Kors, J. P. Reithmaier, G. Sęk, M. Benyoucef. High-purity triggered single-photon emission from symmetric single InAs/InP quantum dots around the telecom c-band window. Adv. Quantum Technol., 3, 1900082(2020).

    [33] S. Kolatschek, C. Nawrath, S. Bauer, J. Huang, J. Fischer, R. Sittig, M. Jetter, S. L. Portalupi, P. Michler. Bright Purcell enhanced single-photon source in the telecom o-band based on a quantum dot in a circular Bragg grating. Nano Lett., 21, 7740-7745(2021).

    [34] J.-H. Kim, T. Cai, C. J. Richardson, R. P. Leavitt, E. Waks. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica, 3, 577-584(2016).

    [35] C.-M. Lee, M. A. Buyukkaya, S. Harper, S. Aghaeimeibodi, C. J. Richardson, E. Waks. Bright telecom-wavelength single photons based on a tapered nanobeam. Nano Lett., 21, 323-329(2020).

    [36] N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowinski, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, G. Sęk. Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography. AIP Adv., 8, 085205(2018).

    [37] L. Sapienza, M. Davanço, A. Badolato, K. Srinivasan. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun., 6, 7833(2015).

    [38] J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, K. Srinivasan. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Rev. Sci. Instrum., 88, 023116(2017).

    [39] X. Huang, R. Su, J. Yang, M. Rao, J. Liu, Y. Yu, S. Yu. Wafer-scale epitaxial low density InAs/GaAs quantum dot for single photon emitter in three-inch substrate. Nanomaterials, 11, 930(2021).

    [40] N. Srocka, P. Mrowinski, J. Große, M. von Helversen, T. Heindel, S. Rodt, S. Reitzenstein. Deterministically fabricated quantum dot single-photon source emitting indistinguishable photons in the telecom o-band. Appl. Phys. Lett., 116, 231104(2020).

    [41] B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, J. Liu. Design for hybrid circular Bragg gratings for a highly efficient quantum-dot single-photon source. J. Korean Phys. Soc., 73, 1502-1505(2018).

    [42] L. Rickert, T. Kupko, S. Rodt, S. Reitzenstein, T. Heindel. Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings. Opt. Express, 27, 36824-36837(2019).

    [43] M. Radulaski, M. Widmann, M. Niethammer, J. L. Zhang, S.-Y. Lee, T. Rendler, K. G. Lagoudakis, N. T. Son, E. Janzén, T. Ohshima, J. Wrachtrup, J. Vučković. Scalable quantum photonics with single color centers in silicon carbide. Nano Lett., 17, 1782-1786(2017).

    [44] C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto. Triggered single photons from a quantum dot. Phys. Rev. Lett., 86, 1502-1505(2001).

    [45] A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, R. J. Warburton. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys., 9, 570-575(2013).

    [46] A. L. Efros, M. Rosen. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett., 78, 1110-1113(1997).

    [47] A. Barbiero, J. Huwer, J. Skiba-Szymanska, T. Müller, R. M. Stevenson, A. J. Shields. Design study for an efficient semiconductor quantum light source operating in the telecom C-band based on an electrically-driven circular Bragg grating. Opt. Express, 30, 10919-10928(2022).

    [48] S. Ji, T. Tajiri, H. Kiyama, A. Oiwa, S. Iwamoto. Design of bull’s-eye optical cavity toward efficient quantum media conversion using gate-defined quantum dot. Jpn. J. Appl. Phys., 60, 102003(2021).

    [49] H. Singh, D. Farfurnik, Z. Luo, A. S. Bracker, S. G. Carter, E. Waks. Optical transparency induced by a largely Purcell-enhanced quantum dot in a polarization-degenerate cavity(2021).

    [50] C. Nawrath, H. Vural, J. Fischer, R. Schaber, S. Portalupi, M. Jetter, P. Michler. Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band. Appl. Phys. Lett., 118, 244002(2021).

    Shi-Wen Xu, Yu-Ming Wei, Rong-Bin Su, Xue-Shi Li, Pei-Nian Huang, Shun-Fa Liu, Xiao-Ying Huang, Ying Yu, Jin Liu, Xue-Hua Wang. Bright single-photon sources in the telecom band by deterministically coupling single quantum dots to a hybrid circular Bragg resonator[J]. Photonics Research, 2022, 10(8): B1
    Download Citation