• Advanced Photonics
  • Vol. 2, Issue 5, 056004 (2020)
Libang Mao1,†, Yang Li1,2, Guixin Li2, Shuang Zhang3, and Tun Cao1,*
Author Affiliations
  • 1Dalian University of Technology, School of Optoelectronic Engineering and Instrumentation Science, Dalian, China
  • 2Southern University of Science and Technology, Department of Materials Science and Engineering, Shenzhen, China
  • 3University of Birmingham, School of Physics and Astronomy, Birmingham, United Kingdom
  • show less
    DOI: 10.1117/1.AP.2.5.056004 Cite this Article Set citation alerts
    Libang Mao, Yang Li, Guixin Li, Shuang Zhang, Tun Cao, "Reversible switching of electromagnetically induced transparency in phase change metasurfaces," Adv. Photon. 2, 056004 (2020) Copy Citation Text show less
    References

    [1] S. E. Harris, J. Field, A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64, 1107-1110(1990).

    [2] S. Harris. Laser without inversion: interference of lifetime-broadened. Phys. Today, 50, 36-42(1997).

    [3] S. Zhang et al. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [4] N. Liu, L. Langguth, T. Weiss. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [5] C. Kurter et al. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys. Rev. Lett., 107, 043901(2011).

    [6] S. Weis et al. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [7] Q. Xu et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett., 96, 123901(2006).

    [8] F. Xia, L. Sekaric, Y. Vlasov. Ultracompact optical buffers on a silicon chip. Nat. Photonics, 1, 65-71(2007).

    [9] C. Monat, M. De Sterke, B. Eggleton. Slow light enhanced nonlinear optics in periodic structures. J. Opt., 12, 104003(2010).

    [10] P. Tassin et al. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett., 102, 053901(2009).

    [11] Z.-G. Dong et al. Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl. Phys. Lett., 97, 114101(2010).

    [12] W. Cao et al. Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators. Appl. Phys. Lett., 103, 101106(2013).

    [13] A. A. Yanik et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. U. S. A., 108, 11784-11789(2011).

    [14] C. Wu et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 11, 69-75(2012).

    [15] P. Tassin et al. Planar designs for electromagnetically induced transparency in metamaterials. Opt. Express, 17, 5595-5605(2009).

    [16] X. Yin et al. Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules. Appl. Phys. Lett., 103, 021115(2013).

    [17] X. Liu et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl. Phys. Lett., 100, 131101(2012).

    [18] Z. Li et al. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt. Express, 19, 8912-8919(2011).

    [19] J. Gu et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [20] Q. Xu et al. Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials. Opt. Lett., 41, 4562-4565(2016).

    [21] X. Duan et al. Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial. Opt. Lett., 38, 483-485(2013).

    [22] H. Cheng et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl. Phys. Lett., 103, 203112(2013).

    [23] G. P. Agrawal. Fiber-Optic Communication Systems(2012).

    [24] G. P. Agrawal, P. L. Christiansen, M. P. Sorensen, A. C. Scott. Nonlinear fiber optics. Nonlinear Science at the Dawn of the 21st Century, 195-211(2000).

    [25] R. Stanley. Plasmonics in the mid-infrared. Nat. Photonics, 6, 409-411(2012).

    [26] X. Yin et al. Active chiral plasmonics. Nano Lett., 15, 4255-4260(2015).

    [27] A. Tittl et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater., 27, 4597-4603(2015).

    [28] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465-476(2017).

    [29] B. Atorf et al. Electro-optic tuning of split ring resonators embedded in a liquid crystal. Opt. Lett., 39, 1129-1132(2014).

    [30] M. Decker et al. Electro-optical switching by liquid-crystal controlled metasurfaces. Opt. Express, 21, 8879-8885(2013).

    [31] Y. Huang et al. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [32] E. Feigenbaum, K. Diest, H. A. Atwater. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett., 10, 2111-2116(2010).

    [33] K. Zangeneh Kamali et al. Reversible image contrast manipulation with thermally tunable dielectric metasurfaces. Small, 15, 1805142(2019).

    [34] Y. Horie et al. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photonics, 5, 1711-1717(2017).

    [35] F. Z. Shu et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv. Opt. Mater., 6, 1700939(2018).

    [36] M. Liu et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345-348(2012).

    [37] M. Seo et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett., 10, 2064-2068(2010).

    [38] M. J. Dicken et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express, 17, 18330-18339(2009).

    [39] K. Shportko et al. Resonant bonding in crystalline phase-change materials. Nat. Mater., 7, 653-658(2008).

    [40] R. Simpson et al. Interfacial phase-change memory. Nat. Nanotechnol., 6, 501-505(2011).

    [41] M. Salinga et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun., 4, 2371(2013).

    [42] W. Wang et al. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells. Appl. Phys. Lett., 93, 043121(2008).

    [43] H. Iwasaki et al. Completely erasable phase change optical disc II: application of Ag-In-Sb-Te mixed-phase system for rewritable compact disc compatible with CD-velocity and double CD-velocity. Jpn. J. Appl. Phys., 32, 5241-5247(1993).

    [44] Y. Kwon et al. Device characteristics of a Ge-doped SbTe alloy for high-speed phase-change random access memory. J. Korean Phys. Soc., 59, 466-469(2011).

    [45] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [46] M. Y. Shalaginov et al. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 9, 3505-3534(2020).

    [47] B. Gholipour et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater., 25, 3050-3054(2013).

    [48] X. Zhou et al. Phase-change memory materials by design: a strain engineering approach. Adv. Mater., 28, 3007-3016(2016).

    [49] P. Hosseini, C. D. Wright, H. Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206-211(2014).

    [50] L. Waldecker et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater., 14, 991-995(2015).

    [51] J. K. Behera et al. Laser switching and characterisation of chalcogenides: systems, measurements, and applicability to photonics. Opt. Mater. Express, 7, 3741-3759(2017).

    [52] A. Karvounis et al. All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett., 109, 051103(2016).

    [53] T. Cao, R. E. Simpson, M. J. Cryan. Study of tunable negative index metamaterials based on phase-change materials. J. Opt. Soc. Am. B: Opt. Phys., 30, 439-444(2013).

    [54] T. Cao et al. Rapid phase transition of a phase-change metamaterial perfect absorber. Opt. Mater. Express, 3, 1101-1110(2013).

    [55] V. K. Mkhitaryan et al. Tunable complete optical absorption in multilayer structures including. Adv. Opt. Mater., 5, 1600452(2017).

    [56] T. Cao et al. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials. Opt. Express, 25, 9911-9925(2017).

    [57] P. Li et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater., 15, 870-875(2016).

    [58] X. Zhou et al. Avalanche atomic switching in strain engineered Sb2Te3–GeTe interfacial phase-change memory cells. Nano Futures, 1, 025003(2017).

    [59] J. Kalikka et al. Evolutionary design of interfacial phase change van der Waals heterostructures. Nanoscale, 8, 18212-18220(2016).

    [60] Q. Wang et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60-65(2016).

    [61] E. Petronijevic, C. Sibilia. All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials. Opt. Express, 24, 30411-30420(2016).

    [62] C. H. Chu et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev., 10, 986-994(2016).

    [63] Z. Zhang et al. All-optical switch and logic gates based on hybrid silicon-Ge2Sb2Te5 metasurfaces. Appl. Opt., 58, 7392-7396(2019).

    [64] C. Li et al. Independent tuning of bright and dark meta-atoms with phase change materials on EIT metasurfaces. Nanoscale, 12, 10065-10071(2020).

    [65] S. J. Kindness et al. Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning. Adv. Opt. Mater., 6, 1800570(2018).

    [66] H. Jung et al. Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling. Adv. Opt. Mater., 7, 1801205(2019).

    [67] V. Fedotov et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett., 99, 147401(2007).

    [68] B. Luk’yanchuk et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [69] L. T. Chew et al. Chalcogenide active photonics. Proc. SPIE, 10345, 103451B(2017).

    [70] M. Wuttig, N. Yamada. Phase-change materials for rewriteable data storage. Nat. Mater., 6, 824-832(2007).

    [71] S. Raoux. Phase change materials. Annu. Rev. Mater. Res., 39, 25-48(2009).

    [72] M. Terao, T. Morikawa, T. Ohta. Electrical phase-change memory: fundamentals and state of the art. Jpn. J. Appl. Phys., 48, 080001(2009).

    [73] J. Orava et al. Characterization of supercooled liquid Ge2Sb2 [74] C. H. Chu et al. Laser-induced phase transitions of Ge2Sb2[75] N. Yamada et al. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys., 69, 2849-2856(1991).

    [76] V. Weidenhof et al. Minimum time for laser induced amorphization of Ge2Sb2. J. Appl. Phys., 88, 657-664(2000). https://doi.org/10.1063/1.373717

    [77] M. Wuttig, M. Salinga. Phase-change materials: fast transformers. Nat. Mater., 11, 270-271(2012).

    [78] N. Liu et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [79] W. Luo et al. Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system. Opt. Express, 24, 5784-5793(2016).

    [80] S. Xiao et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 126, 271-278(2018).

    [81] Y. Yang et al. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [82] E. D. Palik. Handbook of Optical Constants of Solids(1998).

    [83]

    [84] Z. Xi et al. Improved sensitivity in a T-shaped nanodimer plasmonic sensor. J. Opt., 15, 025004(2013).

    [85] Z. Yang et al. Plasmonic Fano resonances in metallic nanorod complexes. Nanoscale, 6, 4985-4997(2014).

    [86] S. Zhang et al. Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications. Nanoscale, 5, 6985-6991(2013).

    [87] H. A. Macleod. Thin-Film Optical Filters(2001).

    [88] C. M. D. Sterke et al. Efficient slow light coupling into photonic crystals. Opt. Express, 15, 10984-10990(2007).

    CLP Journals

    [1] Shoujun Zhang, Xieyu Chen, Kuan Liu, Haiyang Li, Yuehong Xu, Xiaohan Jiang, Yihan Xu, Qingwei Wang, Tun Cao, Zhen Tian, "Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime," Photonics Res. 10, 1731 (2022)

    [2] Quan Xu, Xiaoqiang Su, Xueqian Zhang, Lijuan Dong, Lifeng Liu, Yunlong Shi, Qiu Wang, Ming Kang, Andrea Alù, Shuang Zhang, Jiaguang Han, Weili Zhang, "Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves," Adv. Photon. 4, 016002 (2022)

    [3] Biqiang Jiang, Xiaoming Zhang, Ailun Li, Yueguo Hou, Zhen Hao, Xuetao Gan, Jianlin Zhao, "Electrically induced dynamic Fano-like resonance in a graphene-coated fiber grating," Photonics Res. 10, 1238 (2022)

    Libang Mao, Yang Li, Guixin Li, Shuang Zhang, Tun Cao, "Reversible switching of electromagnetically induced transparency in phase change metasurfaces," Adv. Photon. 2, 056004 (2020)
    Download Citation