• Advanced Photonics
  • Vol. 2, Issue 5, 056004 (2020)
Libang Mao1、†, Yang Li1、2, Guixin Li2, Shuang Zhang3, and Tun Cao1、*
Author Affiliations
  • 1Dalian University of Technology, School of Optoelectronic Engineering and Instrumentation Science, Dalian, China
  • 2Southern University of Science and Technology, Department of Materials Science and Engineering, Shenzhen, China
  • 3University of Birmingham, School of Physics and Astronomy, Birmingham, United Kingdom
  • show less
    DOI: 10.1117/1.AP.2.5.056004 Cite this Article Set citation alerts
    Libang Mao, Yang Li, Guixin Li, Shuang Zhang, Tun Cao. Reversible switching of electromagnetically induced transparency in phase change metasurfaces[J]. Advanced Photonics, 2020, 2(5): 056004 Copy Citation Text show less
    References

    [1] S. E. Harris, J. Field, A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64, 1107-1110(1990).

    [2] S. Harris. Laser without inversion: interference of lifetime-broadened. Phys. Today, 50, 36-42(1997).

    [3] S. Zhang et al. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [4] N. Liu, L. Langguth, T. Weiss. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [5] C. Kurter et al. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys. Rev. Lett., 107, 043901(2011).

    [6] S. Weis et al. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [7] Q. Xu et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett., 96, 123901(2006).

    [8] F. Xia, L. Sekaric, Y. Vlasov. Ultracompact optical buffers on a silicon chip. Nat. Photonics, 1, 65-71(2007).

    [9] C. Monat, M. De Sterke, B. Eggleton. Slow light enhanced nonlinear optics in periodic structures. J. Opt., 12, 104003(2010).

    [10] P. Tassin et al. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett., 102, 053901(2009).

    [11] Z.-G. Dong et al. Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl. Phys. Lett., 97, 114101(2010).

    [12] W. Cao et al. Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators. Appl. Phys. Lett., 103, 101106(2013).

    [13] A. A. Yanik et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. U. S. A., 108, 11784-11789(2011).

    [14] C. Wu et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 11, 69-75(2012).

    [15] P. Tassin et al. Planar designs for electromagnetically induced transparency in metamaterials. Opt. Express, 17, 5595-5605(2009).

    [16] X. Yin et al. Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules. Appl. Phys. Lett., 103, 021115(2013).

    [17] X. Liu et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl. Phys. Lett., 100, 131101(2012).

    [18] Z. Li et al. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt. Express, 19, 8912-8919(2011).

    [19] J. Gu et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [20] Q. Xu et al. Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials. Opt. Lett., 41, 4562-4565(2016).

    [21] X. Duan et al. Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial. Opt. Lett., 38, 483-485(2013).

    [22] H. Cheng et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl. Phys. Lett., 103, 203112(2013).

    [23] G. P. Agrawal. Fiber-Optic Communication Systems(2012).

    [24] G. P. Agrawal, P. L. Christiansen, M. P. Sorensen, A. C. Scott. Nonlinear fiber optics. Nonlinear Science at the Dawn of the 21st Century, 195-211(2000).

    [25] R. Stanley. Plasmonics in the mid-infrared. Nat. Photonics, 6, 409-411(2012).

    [26] X. Yin et al. Active chiral plasmonics. Nano Lett., 15, 4255-4260(2015).

    [27] A. Tittl et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater., 27, 4597-4603(2015).

    [28] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465-476(2017).

    [29] B. Atorf et al. Electro-optic tuning of split ring resonators embedded in a liquid crystal. Opt. Lett., 39, 1129-1132(2014).

    [30] M. Decker et al. Electro-optical switching by liquid-crystal controlled metasurfaces. Opt. Express, 21, 8879-8885(2013).

    [31] Y. Huang et al. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [32] E. Feigenbaum, K. Diest, H. A. Atwater. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett., 10, 2111-2116(2010).

    [33] K. Zangeneh Kamali et al. Reversible image contrast manipulation with thermally tunable dielectric metasurfaces. Small, 15, 1805142(2019).

    [34] Y. Horie et al. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photonics, 5, 1711-1717(2017).

    [35] F. Z. Shu et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv. Opt. Mater., 6, 1700939(2018).

    [36] M. Liu et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345-348(2012).

    [37] M. Seo et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett., 10, 2064-2068(2010).

    [38] M. J. Dicken et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express, 17, 18330-18339(2009).

    [39] K. Shportko et al. Resonant bonding in crystalline phase-change materials. Nat. Mater., 7, 653-658(2008).

    [40] R. Simpson et al. Interfacial phase-change memory. Nat. Nanotechnol., 6, 501-505(2011).

    [41] M. Salinga et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun., 4, 2371(2013).

    [42] W. Wang et al. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells. Appl. Phys. Lett., 93, 043121(2008).

    [43] H. Iwasaki et al. Completely erasable phase change optical disc II: application of Ag-In-Sb-Te mixed-phase system for rewritable compact disc compatible with CD-velocity and double CD-velocity. Jpn. J. Appl. Phys., 32, 5241-5247(1993).

    [44] Y. Kwon et al. Device characteristics of a Ge-doped SbTe alloy for high-speed phase-change random access memory. J. Korean Phys. Soc., 59, 466-469(2011).

    [45] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [46] M. Y. Shalaginov et al. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 9, 3505-3534(2020).

    [47] B. Gholipour et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater., 25, 3050-3054(2013).

    [48] X. Zhou et al. Phase-change memory materials by design: a strain engineering approach. Adv. Mater., 28, 3007-3016(2016).

    [49] P. Hosseini, C. D. Wright, H. Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206-211(2014).

    [50] L. Waldecker et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater., 14, 991-995(2015).

    [51] J. K. Behera et al. Laser switching and characterisation of chalcogenides: systems, measurements, and applicability to photonics. Opt. Mater. Express, 7, 3741-3759(2017).

    [52] A. Karvounis et al. All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett., 109, 051103(2016).

    [53] T. Cao, R. E. Simpson, M. J. Cryan. Study of tunable negative index metamaterials based on phase-change materials. J. Opt. Soc. Am. B: Opt. Phys., 30, 439-444(2013).

    [54] T. Cao et al. Rapid phase transition of a phase-change metamaterial perfect absorber. Opt. Mater. Express, 3, 1101-1110(2013).

    [55] V. K. Mkhitaryan et al. Tunable complete optical absorption in multilayer structures including. Adv. Opt. Mater., 5, 1600452(2017).

    [56] T. Cao et al. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials. Opt. Express, 25, 9911-9925(2017).

    [57] P. Li et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater., 15, 870-875(2016).

    [58] X. Zhou et al. Avalanche atomic switching in strain engineered Sb2Te3–GeTe interfacial phase-change memory cells. Nano Futures, 1, 025003(2017).

    [59] J. Kalikka et al. Evolutionary design of interfacial phase change van der Waals heterostructures. Nanoscale, 8, 18212-18220(2016).

    [60] Q. Wang et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60-65(2016).

    [61] E. Petronijevic, C. Sibilia. All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials. Opt. Express, 24, 30411-30420(2016).

    [62] C. H. Chu et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev., 10, 986-994(2016).

    [63] Z. Zhang et al. All-optical switch and logic gates based on hybrid silicon-Ge2Sb2Te5 metasurfaces. Appl. Opt., 58, 7392-7396(2019).

    [64] C. Li et al. Independent tuning of bright and dark meta-atoms with phase change materials on EIT metasurfaces. Nanoscale, 12, 10065-10071(2020).

    [65] S. J. Kindness et al. Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning. Adv. Opt. Mater., 6, 1800570(2018).

    [66] H. Jung et al. Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling. Adv. Opt. Mater., 7, 1801205(2019).

    [67] V. Fedotov et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett., 99, 147401(2007).

    [68] B. Luk’yanchuk et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [69] L. T. Chew et al. Chalcogenide active photonics. Proc. SPIE, 10345, 103451B(2017).

    [70] M. Wuttig, N. Yamada. Phase-change materials for rewriteable data storage. Nat. Mater., 6, 824-832(2007).

    [71] S. Raoux. Phase change materials. Annu. Rev. Mater. Res., 39, 25-48(2009).

    [72] M. Terao, T. Morikawa, T. Ohta. Electrical phase-change memory: fundamentals and state of the art. Jpn. J. Appl. Phys., 48, 080001(2009).

    [73] J. Orava et al. Characterization of supercooled liquid Ge2Sb2 [74] C. H. Chu et al. Laser-induced phase transitions of Ge2Sb2[75] N. Yamada et al. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys., 69, 2849-2856(1991).

    [76] V. Weidenhof et al. Minimum time for laser induced amorphization of Ge2Sb2. J. Appl. Phys., 88, 657-664(2000). https://doi.org/10.1063/1.373717

    [77] M. Wuttig, M. Salinga. Phase-change materials: fast transformers. Nat. Mater., 11, 270-271(2012).

    [78] N. Liu et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [79] W. Luo et al. Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system. Opt. Express, 24, 5784-5793(2016).

    [80] S. Xiao et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 126, 271-278(2018).

    [81] Y. Yang et al. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [82] E. D. Palik. Handbook of Optical Constants of Solids(1998).

    [83]

    [84] Z. Xi et al. Improved sensitivity in a T-shaped nanodimer plasmonic sensor. J. Opt., 15, 025004(2013).

    [85] Z. Yang et al. Plasmonic Fano resonances in metallic nanorod complexes. Nanoscale, 6, 4985-4997(2014).

    [86] S. Zhang et al. Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications. Nanoscale, 5, 6985-6991(2013).

    [87] H. A. Macleod. Thin-Film Optical Filters(2001).

    [88] C. M. D. Sterke et al. Efficient slow light coupling into photonic crystals. Opt. Express, 15, 10984-10990(2007).

    CLP Journals

    [1] Shoujun Zhang, Xieyu Chen, Kuan Liu, Haiyang Li, Yuehong Xu, Xiaohan Jiang, Yihan Xu, Qingwei Wang, Tun Cao, Zhen Tian. Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime[J]. Photonics Research, 2022, 10(7): 1731

    [2] Quan Xu, Xiaoqiang Su, Xueqian Zhang, Lijuan Dong, Lifeng Liu, Yunlong Shi, Qiu Wang, Ming Kang, Andrea Alù, Shuang Zhang, Jiaguang Han, Weili Zhang. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves[J]. Advanced Photonics, 2022, 4(1): 016002

    [3] Biqiang Jiang, Xiaoming Zhang, Ailun Li, Yueguo Hou, Zhen Hao, Xuetao Gan, Jianlin Zhao. Electrically induced dynamic Fano-like resonance in a graphene-coated fiber grating[J]. Photonics Research, 2022, 10(5): 1238

    Libang Mao, Yang Li, Guixin Li, Shuang Zhang, Tun Cao. Reversible switching of electromagnetically induced transparency in phase change metasurfaces[J]. Advanced Photonics, 2020, 2(5): 056004
    Download Citation