• Advanced Photonics
  • Vol. 4, Issue 2, 024002 (2022)
Lingqi Li1, Weijin Kong1, and Feng Chen2、*
Author Affiliations
  • 1Qingdao University, College of Physics Science, Center for Marine Observation and Communications, Qingdao, China
  • 2Shandong University, School of Physics, State Key Laboratory of Crystal Materials, Jinan, China
  • show less
    DOI: 10.1117/1.AP.4.2.024002 Cite this Article Set citation alerts
    Lingqi Li, Weijin Kong, Feng Chen. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 2022, 4(2): 024002 Copy Citation Text show less
    References

    [1] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2005).

    [2] A. A. Kaminskii. Laser Crystals: Their Physics and Properties(2013).

    [3] P. Ferraro et al. Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques(2009).

    [4] J. D. Bierlein, C. B. Arweiler. Electro-optic and dielectric properties of KTiOPO4. Appl. Phys. Lett., 49, 917-919(1986). https://doi.org/10.1063/1.97483

    [5] X.-L. Wang et al. Experimental ten-photon entanglement. Phys. Rev. Lett., 117, 210502(2016).

    [6] D. Wei et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat. Commun., 10, 4193(2019).

    [7] Y. Jia, F. Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review [Invited]. Chin. Opt. Lett., 17, 012302(2019).

    [8] M. Businger et al. Optical spin-wave storage in a solid-state hybridized electron-nuclear spin ensemble. Phys. Rev. Lett., 124, 053606(2020).

    [9] V. Bharadwaj et al. Femtosecond laser written photonic and microfluidic circuits in diamond. J. Phys. Photonics, 1, 022001(2019).

    [10] M. F. Askarani et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide. Phys. Rev. Appl., 11, 054056(2019).

    [11] T. Zhong et al. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles. Nat. Commun., 8, 14107(2017).

    [12] G. Calusine et al. Cavity-enhanced measurements of defect spins in silicon carbide. Phys. Rev. Appl., 6, 014019(2016).

    [13] O. Alibart et al. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt., 18, 104001(2016).

    [14] H. Jin et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett., 113, 103601(2014).

    [15] E. Saglamyurek et al. Broadband waveguide quantum memory for entangled photons. Nature, 469, 512-515(2011).

    [16] S. Zhu. Meter-level optical delay line on a low-loss lithium niobate nanophotonics chip. Chin. Phys. Lett., 37, 080102(2020).

    [17] Y. Jia et al. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [18] J. Lin et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910-1936(2020).

    [19] H. L. Xu, H. B. Sun. Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities. Sci. China Phys. Mech. Astron., 58, 114202(2015).

    [20] K. Okamoto. Fundamentals of Optical Waveguides(2006).

    [21] M. L. Calvo, V. Lakshminarayanan. Optical Waveguides: From Theory to Applied Technologies(2018).

    [22] C. Grivas. Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications. Prog. Quantum Electron., 45–46, 3-160(2016).

    [23] F. Chen, J. R. Vázquez de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev., 8, 251-275(2014).

    [24] Y. Jia et al. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron. Adv., 3, 190042(2020).

    [25] S. Suntsov et al. Er:Ti:LiNbO3 ridge waveguide optical amplifiers by optical grade dicing and three-side Er and Ti in-diffusion. Appl. Phys. B, 123, 118(2017). https://doi.org/10.1007/s00340-016-6635-1

    [26] D. Kip. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications. Appl. Phys. B, 67, 131-150(1998).

    [27] P. Ganguly et al. Determination of refractive indices from the mode profiles of UV-written channel waveguides in LiNbO3-crystals for optimization of writing conditions. J. Lightwave Technol., 27, 3490-3497(2009). https://doi.org/10.1109/JLT.2009.2015963

    [28] F. Chen. Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photonics Rev., 6, 622-640(2012).

    [29] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2, 219-225(2008).

    [30] K. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [31] S. Gross, M. J. Withford. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics, 4, 332-352(2015).

    [32] R. Osellame et al. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials(2012).

    [33] K. M. Davis et al. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 21, 1729-1731(1996).

    [34] D. Z. Tan et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv. Photonics, 3, 024002(2021).

    [35] F. Sima et al. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics, 7, 613-634(2018).

    [36] Z. C. Ma et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods, 2, 1700413(2018).

    [37] B. Zhang et al. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photonics Rev., 14, 1900407(2020). https://doi.org/10.1002/lpor.201900407

    [38] W. M. Pätzold et al. Low-loss curved waveguides in polymers written with a femtosecond laser. Opt. Express, 25, 263-270(2017).

    [39] Z.-Z. Li et al. Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses. Opt. Lett., 46, 520-523(2021).

    [40] Q. Zhang et al. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering. Opt. Express, 25, 13263-13270(2017).

    [41] J. Qi et al. Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses. Opt. Mater. Express, 6, 2554-2559(2016).

    [42] P. Wang et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing. Sci. Rep., 7, 41211(2017).

    [43] J. Imbrock et al. Waveguide-integrated three-dimensional quasi-phase-matching structures. Optica, 7, 28-34(2020).

    [44] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [45] C.-Y. Wang et al. On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing. Opt. Lett., 44, 102-105(2019).

    [46] H. Tang et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv., 4, eaat3174(2018).

    [47] Y. Chen et al. Mapping twisted light into and out of a photonic chip. Phys. Rev. Lett., 121, 233602(2018).

    [48] Y. Chen et al. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett., 124, 153601(2020).

    [49] S. Atzeni et al. Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits. Optica, 5, 311-314(2018).

    [50] C. Liu et al. Reliable coherent optical memory based on a laser-written waveguide. Optica, 7, 192-197(2020).

    [51] C. Liu et al. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys. Rev. Lett., 125, 260504(2020).

    [52] A. Seri et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica, 5, 934-941(2018).

    [53] A. Seri et al. Quantum storage of frequency-multiplexed heralded single photons. Phys. Rev. Lett., 123, 080502(2019).

    [54] M. Malinauskas et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

    [55] E. Glezer et al. Three-dimensional optical storage inside transparent materials. Opt. Lett., 21, 2023-2025(1996).

    [56] L. V. Keldysh. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP, 20, 1307-1314(1965).

    [57] S. Sundaram, E. Mazur. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater., 1, 217-224(2002).

    [58] C. Phipps. Laser Ablation and Its Applications(2007).

    [59] N. Bloembergen. Laser-induced electric breakdown in solids. IEEE J. Quantum Electron., 10, 375-386(1974).

    [60] K. Sugioka, Y. Cheng. Ultrafast Laser Processing: From Micro -to Nanoscale(2013).

    [61] S. Nolte et al. Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B, 14, 2716-2722(1997).

    [62] A. M. Streltsov, N. F. Borrelli. Study of femtosecond-laser-written waveguides in glasses. J. Opt. Soc. Am. B, 19, 2496-2504(2002).

    [63] J. Burghoff, S. Nolte, A. Tünnermann. Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl. Phys. A, 89, 127-132(2007). https://doi.org/10.1007/s00339-007-4152-0

    [64] B. McMillen, C. Athanasiou, Y. Bellouard. Femtosecond laser direct-write waveplates based on stress-induced birefringence. Opt. Express, 24, 27239-27252(2016).

    [65] Y. Ren et al. Femtosecond laser irradiation on Nd:YAG crystal: surface ablation and high-spatial-frequency nanograting. Appl. Surf. Sci., 441, 372-380(2018).

    [66] G. Eberle et al. Laser surface and subsurface modification of sapphire using femtosecond pulses. Appl. Surf. Sci., 378, 504-512(2016).

    [67] D. C. Deshpande et al. Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate. J. Appl. Phys., 97, 074316(2005).

    [68] J. Song et al. Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses. Appl. Phys. Lett., 92, 092904(2008).

    [69] D. Tan, B. Zhang, J. Qiu. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photonics Rev., 15, 2000455(2021).

    [70] M. D. Perry et al. Ultrashort-pulse laser machining of dielectric materials. J. Appl. Phys., 85, 6803-6810(1999).

    [71] M. Lenzner et al. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett., 80, 4076-4079(1998).

    [72] T. Jia et al. Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals. Phys. Rev. B, 73, 054105(2006). https://doi.org/10.1103/PhysRevB.73.054105

    [73] K. Itoh et al. Ultrafast processes for bulk modification of transparent materials. MRS Bull., 31, 620-625(2006).

    [74] S. M. Eaton et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express, 13, 4708-4716(2005).

    [75] W. Nie et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing. Opt. Lett., 41, 2169-2172(2016).

    [76] D. Ashkenasi et al. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation. Appl. Surf. Sci., 150, 101-106(1999).

    [77] A. H. Nejadmalayeri et al. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt. Lett., 30, 964-966(2005).

    [78] A. Dupont et al. From near-UV to long-wave infrared waveguides inscribed in barium fluoride using a femtosecond laser. Opt. Lett., 46, 3925-3928(2021).

    [79] T. Feng et al. Pulse-propagation modeling and experiment for femtosecond-laser writing of waveguide in Nd:YAG. Crystals, 9, 434(2019).

    [80] J.-P. Bérubé et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire. Opt. Lett., 44, 37-40(2019).

    [81] M. A. Butt et al. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes. Opt. Express, 23, 15343-15355(2015).

    [82] R. Osellame et al. Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator. Opt. Express, 13, 612-620(2005).

    [83] J. Burghoff et al. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl. Phys. Lett., 89, 081108(2006).

    [84] J. R. MacDonald et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe. Opt. Lett., 35, 4036-4038(2010).

    [85] A. Rodenas, A. K. Kar. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. Opt. Express, 19, 17820-17833(2011).

    [86] A. G. Okhrimchuk et al. Phase transformation under direct laser writing in a YAG single crystal. Opt. Mater. Express, 7, 3408-3421(2017).

    [87] Y. Zhang et al. Femtosecond laser direct writing of Nd:YAG waveguide with type I modification: positive refractive index change in track. Opt. Mater., 113, 110844(2021).

    [88] J. Lv et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal. Opt. Mater. Express, 5, 1274-1280(2015). https://doi.org/10.1364/OME.5.001274

    [89] R. He et al. Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing. Opt. Express, 22, 31293-31298(2014).

    [90] J. Burghoff et al. Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl. Phys. A, 86, 165-170(2007). https://doi.org/10.1007/s00339-006-3750-6

    [91] B. Zhang et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses. Opt. Mater., 86, 571-575(2018). https://doi.org/10.1016/j.optmat.2018.11.001

    [92] A. Rodenas et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations. Appl. Phy. B, 95, 85-96(2009).

    [93] J. Thomas et al. Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Appl. Phys. Lett., 91, 151108(2007).

    [94] Y. Liao et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt. Lett., 33, 2281-2283(2008). https://doi.org/10.1364/OL.33.002281

    [95] D. S. da Silva et al. Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses. Opt. Mater., 75, 267-273(2018).

    [96] G. A. Torchia et al. Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides. Appl. Phys. Lett., 92, 111103(2008).

    [97] T. Calmano et al. Laser oscillation in Yb:YAG waveguide beam-splitters with variable splitting ratio. Opt. Lett., 40, 1753-1756(2015).

    [98] H. Liu et al. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance. Opt. Express, 20, 18620-18629(2012).

    [99] H. D. Nguyen et al. Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations. Opt. Express, 25, 3722-3736(2017). https://doi.org/10.1364/OE.25.003722

    [100] Y. Jia et al. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Sci. Rep., 4, 5988(2014).

    [101] Y. Jia et al. Three-dimensional waveguide splitters inscribed in Nd:YAG by femtosecond laser writing: realization and laser emission. J. Lightwave Technol., 34, 1328-1332(2016).

    [102] F. Chen, J. Vázquez de Aldana. Laser-written 3D crystalline photonic devices(2022).

    [103] J. Lapointe et al. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses. Light Sci. Appl., 9, 64(2020).

    [104] V. Lucarini et al. Kramers-Kronig Relations in Optical Materials Research(2005).

    [105] K. Miura et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett., 71, 3329-3331(1997).

    [106] C. Hnatovsky et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl. Phys. Lett., 87, 014104(2005).

    [107] S. Juodkazis et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett., 96, 166101(2006).

    [108] J. E. Greivenkamp. Field Guide to Geometrical Optics(2004).

    [109] L. Li et al. Femtosecond laser writing of optical waveguides by self-induced multiple refocusing in LiTaO3 crystal. J. Lightwave Technol., 37, 3452-3458(2019). https://doi.org/10.1109/JLT.2019.2917076

    [110] Z. Wu et al. Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica. Opt. Lett., 27, 448-450(2002).

    [111] E. Toratani, M. Kamata, M. Obara. Self-fabrication of void array in fused silica by femtosecond laser processing. Appl. Phys. Lett., 87, 171103(2005).

    [112] R. W. Boyd. Nonlinear Optics(2003).

    [113] A. Rodenas et al. Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing. Opt. Express, 16, 13979-13989(2008).

    [114] J. W. Chan et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett., 82, 2371-2373(2003).

    [115] G. R. Castillo et al. Stress-induced waveguides in Nd:YAG by simultaneous double-beam irradiation with femtosecond pulses. Opt. Mater., 51, 84-88(2016).

    [116] G. Cerullo et al. Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing. Opt. Lett., 27, 1938-1940(2002).

    [117] V. Garzillo et al. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass. J. Appl. Phys., 120, 013102(2016).

    [118] Q. Zhang et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photonics Res., 7, 503-507(2019).

    [119] J. Thomas et al. Quasi-phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser Photonics Rev., 7, L17-L20(2013).

    [120] L. M. Mazur et al. Localized ferroelectric domains via laser poling in monodomain calcium barium niobate crystal. Laser Photonics Rev., 15, 2100088(2021).

    [121] D. Wei et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics, 12, 596-600(2018).

    [122] S. Liu et al. Nonlinear volume holography in 3D nonlinear photonic crystals. Laser Photonics Rev., 14, 2000224(2020).

    [123] P. Chen et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light Sci. Appl., 10, 146(2021).

    [124] M. Shao et al. Pushing periodic-disorder-induced phase matching into the deep-ultraviolet spectral region: theory and demonstration. Light Sci. Appl., 9, 45(2020).

    [125] T. Xu et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photonics, 12, 591-595(2018).

    [126] X. Chen et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Opt. Lett., 41, 2410-2413(2016).

    [127] S. Kroesen et al. Monolithic fabrication of quasi-phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity. Appl. Phys. Lett., 107, 101109(2015). https://doi.org/10.1063/1.4930834

    [128] S. Kiyama et al. Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates. Phys. Chem. C, 113, 11560-11566(2009).

    [129] J. Lv et al. Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching. Photonics Res., 8, 257-262(2020).

    [130] D. Choudhury et al. Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications. Appl. Phys. Lett., 103, 041101(2013).

    [131] A. Ródenas et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics, 13, 105-109(2019).

    [132] P. Wu et al. Annular waveguide lasers at 1064 nm in Nd:YAG crystal produced by femtosecond laser inscription. Appl. Opt., 57, 5420-5424(2018).

    [133] H. Liu et al. Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription. Opt. Mater., 39, 125-129(2015).

    [134] C. Zhang et al. Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription. Opt. Express, 19, 12503-12508(2011).

    [135] H. Liu et al. Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses. Opt. Mater. Express, 3, 278-283(2013).

    [136] L. Li et al. Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band. Opt. Express, 25, 24236-24241(2017).

    [137] R. He et al. Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals. Appl. Opt., 52, 3713-3718(2013). https://doi.org/10.1364/AO.52.003713

    [138] W. Silva et al. Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain. Opt. Lett., 35, 916-918(2010).

    [139] G. Salamu, N. Pavel. Power scaling from buried depressed-cladding waveguides realized in Nd:YVO4 by femtosecond-laser beam writing. Opt. Laser Technol., 84, 149-154(2016). https://doi.org/10.1016/j.optlastec.2016.05.015

    [140] Z. Li et al. Near-infrared all-optical switching based on nano/micro optical structures in YVO4 matrix: embedded plasmonic nanoparticles and laser-written waveguides. Adv. Photonics Res., 2, 2000064(2021). https://doi.org/10.1002/adpr.202000064

    [141] Y. Tan et al. 70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser. Opt. Express, 18, 24994-24999(2010). https://doi.org/10.1364/OE.18.024994

    [142] H. Liu et al. Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing. Opt. Lett., 39, 4553-4556(2014). https://doi.org/10.1364/OL.39.004553

    [143] B. Zhang et al. Femtosecond laser modification of 6H–SiC crystals for waveguide devices. Appl. Phys. Lett., 116, 111903(2020).

    [144] J. Lv et al. Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal. Opt. Express, 24, 25482-25490(2016). https://doi.org/10.1364/OE.24.025482

    [145] J. Lv et al. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal. J. Lightwave Technol., 34, 3587-3591(2016). https://doi.org/10.1109/JLT.2016.2573841

    [146] L. Li et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci. Rep., 7, 7034(2017). https://doi.org/10.1038/s41598-017-07587-w

    [147] B. Wu et al. Recoverable and rewritable waveguide beam splitters fabricated by tailored femtosecond laser writing of lithium tantalate crystal. Opt. Laser Technol., 145, 107500(2022).

    [148] L. Li et al. Efficient quasi-phase-matching in fan-out PPSLT crystal waveguides by femtosecond laser direct writing. Opt. Express, 27, 36875-36885(2019).

    [149] C. Cheng et al. Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal. Opt. Eng., 54, 067113(2015). https://doi.org/10.1117/1.OE.54.6.067113

    [150] Z. Li et al. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing. Opt. Mater., 73, 45-49(2017).

    [151] V. Apostolopoulos et al. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire. Appl. Phys. Lett., 85, 1122-1124(2004). https://doi.org/10.1063/1.1781737

    [152] C. Grivas et al. Generation of multi-gigahertz trains of phase-coherent femtosecond laser pulses in Ti:sapphire waveguides. Laser Photonics Rev., 12, 1800167(2018).

    [153] Y. Ren et al. Optical-lattice-like waveguide structures in Ti:sapphire by femtosecond laser inscription for beam splitting. Opt. Mater. Express, 7, 1942-1949(2017).

    [154] S. Campbell et al. Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides. Opt. Express, 15, 17146-17150(2007).

    [155] F. Laurell et al. Laser-written waveguides in KTP for broadband type II second harmonic generation. Opt. Express, 20, 22308-22313(2012).

    [156] N. Dong et al. Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides. Phys. Status Solid-RRL, 6, 306-308(2012).

    [157] W. Nie et al. Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription. Sci. Rep., 6, 22310(2016).

    [158] W. Nie et al. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing. Opt. Lett., 40, 2437-2440(2015).

    [159] L. Li et al. Femtosecond-laser-written S-curved waveguide in Nd:YAP crystal: fabrication and multi-gigahertz lasing. J. Lightwave Technol., 38, 6845-6852(2020).

    [160] Y. Jia et al. Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation. Appl. Phys. Express, 5, 072701(2012). https://doi.org/10.1143/APEX.5.072701

    [161] Y. Ren et al. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides. Opt. Express, 21, 11562-11567(2013).

    [162] Y. Jia et al. Enhanced second harmonic generation in femtosecond laser inscribed double-cladding waveguide of Nd:GdCOB crystal. J. Lightwave Technol., 31, 3873-3878(2013).

    [163] H. Liu et al. Continuous-wave lasing at 1.06  μm in femtosecond laser written Nd:KGW waveguides. Opt. Mater., 37, 93-96(2014). https://doi.org/10.1016/j.optmat.2014.05.005

    [164] S. Li et al. Cladding waveguide lasers in femtosecond laser written Nd:KGW waveguides. Opt. Mater., 110, 110517(2020).

    [165] Y. Ren et al. Ti:sapphire micro-structures by femtosecond laser inscription: guiding and luminescence properties. Opt. Mater., 58, 61-66(2016).

    [166] E. Kifle et al. Watt-level ultrafast laser inscribed thulium waveguide lasers. Prog. Quantum. Electron., 72, 100266(2020).

    [167] B. Wu et al. 3D polarization-dependent waveguide arrays in LiNbO3 crystal produced by femtosecond laser writing. J. Lightwave Technol., 38, 3988-3993(2020). https://doi.org/10.1109/JLT.2020.2982905

    [168] X. Sun et al. Femtosecond laser direct writing of depressed cladding waveguides in Nd:YAG with “ear-like” structures: fabrication and laser generation. Opt. Express, 29, 4296-4307(2021).

    [169] Y. Jia et al. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Opt. Express, 27, 30941-30951(2019).

    [170] H. Liu et al. Femtosecond laser direct writing of evanescently-coupled planar waveguide laser arrays. Opt. Mater. Express, 9, 4447-4455(2019).

    [171] A. Okhrimchuk et al. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses. Opt. Express, 20, 3832-3843(2012).

    [172] H. Liu et al. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers. Opt. Lett., 38, 3294-3297(2013).

    [173] J. R. Vázquez de Aldana et al. Femtosecond laser direct inscription of 3D photonic devices in Er/Yb-doped oxyfluoride nano-glass ceramics. Opt. Mater. Express, 10, 2695-2704(2020).

    [174] G. Douglass et al. Novel concept for visible and near infrared spectro-interferometry: laser-written layered arrayed waveguide gratings. Opt. Express, 26, 18470-18479(2018).

    [175] M. C. Rechtsman et al. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [176] G. Djogo et al. Femtosecond laser additive and subtractive micro-processing: enabling a high-channel-density silica interposer for multicore fibre to silicon-photonic packaging. Int. J. Extrem. Manuf., 1, 045002(2019).

    [177] J. Guan et al. Component-wise testing of laser-written integrated coupled-mode beam splitters. Opt. Lett., 44, 3174-3177(2019).

    [178] A. Courvoisier et al. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl. Phys. Lett., 109, 031109(2016).

    [179] J. G. Ajates et al. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: a route to integrate complex photonic circuits in crystals. Opt. Mater., 72, 220-225(2017).

    [180] H. Liu et al. Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing. IEEE J. Sel. Top. Quant., 22, 227-230(2015).

    [181] Y. Ren et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:sapphire crystal. Opt. Laser Technol., 103, 82-88(2018).

    [182] J. G. Ajates et al. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides. Opt. Mater. Express, 8, 1890-1901(2018). https://doi.org/10.1364/OME.8.001890

    [183] W. Nie et al. Implementation of nearly single-mode second harmonic generation by using a femtosecond laser written waveguiding structure in KTiOPO4 nonlinear crystal. Opt. Mater., 84, 531-535(2018). https://doi.org/10.1016/j.optmat.2018.07.057

    [184] B. Zhang et al. Femtosecond laser inscribed novel polarization beam splitters based on tailored waveguide configurations. J. Lightwave Technol., 39, 1438-1443(2020).

    [185] C. Romero et al. Fabrication of tapered circular depressed-cladding waveguides in Nd:YAG crystal by femtosecond-laser direct inscription. Micromachines, 11, 10(2020).

    [186] G. R. Castillo et al. Depressed-cladding 3-D waveguide arrays fabricated with femtosecond laser pulses. J. Lightwave Technol., 35, 2520-2525(2017).

    [187] N. Skryabin et al. Femtosecond laser written depressed-cladding waveguide 2 × 2, 1 × 2 and 3 × 3 directional couplers in Tm3+:YAG crystal. Micromachines, 11, 1(2020). https://doi.org/10.3390/mi11010001

    [188] N. Dong et al. Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides. Appl. Phys. Lett., 98, 181103(2011).

    [189] T. Calmano et al. Crystalline Pr:SrAl12O19 waveguide laser in the visible spectral region. Opt. Lett., 36, 4620-4622(2011). https://doi.org/10.1364/OL.36.004620

    [190] F. Reichert et al. Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides. Opt. Lett., 38, 2698-2701(2013). https://doi.org/10.1364/OL.38.002698

    [191] S. Müller et al. Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser. Opt. Lett., 37, 5223-5225(2012). https://doi.org/10.1364/OL.37.005223

    [192] C. Grivas et al. Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses. Opt. Lett., 37, 4630-4632(2012).

    [193] Y. Ren et al. Switchable single-dual-wavelength Yb, Na:CaF2 waveguide lasers operating in continuous-wave and pulsed regimes. Opt. Mater. Express, 8, 1633-1641(2018). https://doi.org/10.1364/OME.8.001633

    [194] T. Calmano et al. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt. Express, 21, 25501-25508(2013).

    [195] S. Hakobyan et al. Highly efficient Q-switched Yb:YAG channel waveguide laser with 5.6 W of average output power. Opt. Lett., 41, 4715-4718(2016).

    [196] S. Y. Choi et al. 2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser. Opt. Express, 26, 5140-5145(2018).

    [197] J. E. Bae et al. Carbon nanotube Q-switched Yb:KLuW surface channel waveguide lasers. Opt. Lett., 45, 216-219(2020).

    [198] C. Cheng et al. Tin diselenide as a new saturable absorber for generation of laser pulses at 1  μm. Opt. Express, 25, 6132-6140(2017). https://doi.org/10.1364/OE.25.006132

    [199] Z. Li et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Opt. Express, 27, 8727-8737(2019).

    [200] M. V. Ponarina et al. Dual-wavelength generation of picosecond pulses with 9.8 GHz repetition rate in Nd:YAG waveguide laser with graphene. Quantum Electron., 49, 365(2019).

    [201] Z. Li et al. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure. Photonics Res., 5, 406-410(2017).

    [202] Z. Li et al. 6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers. Opt. Express, 26, 11321-11330(2018).

    [203] Z. Li et al. Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber. APL Photonics, 3, 080802(2018).

    [204] Y. Ren et al. Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing. Opt. Express, 20, 1969-1974(2012). https://doi.org/10.1364/OE.20.001969

    [205] E. Kifle et al. Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes. Photonics Res., 6, 971-980(2018).

    [206] E. Kifle et al. Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2. Opt. Express, 27, 8745-8755(2019). https://doi.org/10.1364/OE.27.008745

    [207] E. Kifle et al. Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers. Opt. Lett., 42, 1169-1172(2017). https://doi.org/10.1364/OL.42.001169

    [208] E. Kifle et al. Ultrafast laser inscription and 2  μm laser operation of Y-branch splitters in monoclinic crystals. J. Lightwave Technol., 38, 4374-4384(2020). https://doi.org/10.1109/JLT.2020.2986474

    [209] Y. Ren et al. 7.8-GHz graphene-based 2-μm monolithic waveguide laser. IEEE J. Sel. Top. Quant., 21, 395-400(2014). https://doi.org/10.1109/JSTQE.2014.2350016

    [210] E. Kifle et al. Femtosecond-laser-written Ho:KGd(WO4)2 waveguide laser at 2.1  μm. Opt. Lett., 44, 1738-1741(2019). https://doi.org/10.1364/OL.44.001738

    [211] E. Kifle et al. Low-loss fs-laser-written surface waveguide lasers at >2  μm in monoclinic Tm3+:MgWO4. Opt. Lett., 45, 4060-4063(2020). https://doi.org/10.1364/OL.395811

    [212] F. Thorburn et al. 5.9 GHz graphene based Q-switched modelocked mid-infrared monolithic waveguide laser. Opt. Express, 25, 26166-26174(2017).

    [213] S. McDaniel et al. Operation of Ho:YAG ultrafast laser inscribed waveguide lasers. Appl. Opt., 56, 3251-3256(2017).

    [214] J. R. Macdonald et al. Compact Cr:ZnS channel waveguide laser operating at 2333 nm. Opt. Express, 22, 7052-7057(2014).

    [215] S. A. McDaniel et al. Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide. Opt. Express, 24, 3502-3512(2016).

    [216] J. E. Bae et al. Controllable dynamic single- and dual-channel graphene Q-switching in a beam-splitter-type channel waveguide laser. Laser Photonics Rev., 16, 2100501(2022).

    [217] J. Burghoff et al. Waveguides in lithium niobate fabricated by focused ultrashort laser pulses. Appl. Surf. Sci., 253, 7899-7902(2007).

    [218] B. Zhang et al. Second harmonic generation in femtosecond laser written lithium niobate waveguides based on birefringent phase matching. Opt. Mater., 107, 110075(2020).

    [219] Y. Jia et al. Second harmonic generation of violet light in femtosecond-laser-inscribed BiB3O6 cladding waveguides. Opt. Mater. Express, 3, 1279-1284(2013). https://doi.org/10.1364/OME.3.001279

    [220] M. Triplett et al. Multi-watt, broadband second-harmonic-generation in MgO:PPSLT waveguides fabricated with femtosecond laser micromachining. Opt. Express, 27, 21102-21115(2019).

    [221] L. Li et al. Tunable violet radiation in a quasi-phase-matched periodically poled stoichiometric lithium tantalate waveguide by direct femtosecond laser writing. Results Phys., 19, 103373(2020).

    [222] S. Müller et al. Highly efficient continuous wave blue second-harmonic generation in fs-laser written periodically poled Rb:KTiOPO4 waveguides. Opt. Lett., 39, 1274-1277(2014). https://doi.org/10.1364/OL.39.001274

    [223] S. Bhardwaj et al. Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser. Appl. Opt., 56, 5692-5697(2017).

    [224] L. Wang et al. Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal. Opt. Express, 27, 2101-2111(2019). https://doi.org/10.1364/OE.27.002101

    [225] T. Meany et al. Laser written circuits for quantum photonics. Laser Photonics Rev., 9, 363-384(2015).

    [226] G. D. Marshall et al. Laser written waveguide photonic quantum circuits. Opt. Express, 17, 12546-12554(2009).

    [227] M. Zhong et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature, 517, 177-180(2015).

    [228] T. Zhong et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science, 357, 1392-1395(2017).

    [229] G. Corrielli et al. Integrated optical memory based on laser-written waveguides. Phys. Rev. Appl., 5, 054013(2016).

    [230] T.-X. Zhu et al. Coherent optical memory based on a laser-written on-chip waveguide. Phys. Rev. Appl., 14, 054071(2020).

    [231] A. Boes et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).

    [232] R. Wu et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 8, 910(2018).

    [233] J. Zhang et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).

    [234] J. Lin et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep., 5, 8072(2015).

    [235] R. Wu et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116-4119(2018).

    [236] J. Zhou et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 084201(2020).

    [237] M. Wang et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng., 1, e9(2019).

    [238] Z. Wang et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett., 46, 380-383(2021). https://doi.org/10.1364/OL.410608

    [239] D. Yin et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Opt. Lett., 46, 2127-2130(2021).

    [240] J. Zhou et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photonics Rev., 15, 2100030(2021).

    [241] X. Yan et al. High optical damage threshold on-chip lithium tantalate microdisk resonator. Opt. Lett., 45, 4100-4103(2020).

    Lingqi Li, Weijin Kong, Feng Chen. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 2022, 4(2): 024002
    Download Citation