[1] M C SEKHAR, E VEENA, N S KUMAR et al. A review on piezoelectric materials and their applications. Crystal Research and Technology(2023).
[2] J G WU. Perovskite lead-free piezoelectric ceramics. Journal of Appealed Physics(2020).
[3] G H MU, S Y YANG, X LI et al. Several problems in PZT piezoelectric ceramics preparation. Material Reports(2004).
[4] P K PANDA, B SAHOO. PZT to lead-free piezoceramics: a review. Ferroelectrics(2015).
[5] D S ZHANG, A F TIAN. Electrical properties of K0.5Na0.5NbO3 lead-free piezoceramics by pressureless sintering. Journal of Inorganic Materials(2013).
[6] K WANG, J F LI. Phase transition, sintering and property enhancement. Journal of Advanced Ceramics(2012).
[7] J ROEDEL, K G WEBBER, R DITTMER et al. Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society(2015).
[8] K WANG, Z Y SHEN, B P ZHANG et al. (K,Na)NbO3-based lead-free piezoceramics: status, prospects and challenges. Journal of Inorganic Materials(2014).
[9] F Z YAO, C F WU, J F LI et al. Recent development on (K,Na)NbO3-based lead-free piezoceramics. Journal of the Chinese Ceramic Society(2022).
[10] Y SAITO, H TAKAO, T TANI et al. Lead-free piezoceramics. Nature(2004).
[11] K XU, J LI, X LV et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramic. Advanced Materials(2018).
[12] H TAO, H WU, Y LIU et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. Journal of the American Chemical Society(2019).
[13] Q LIU, J F LI, L ZHAO et al. Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. Journal of Material Chemistry(2018).
[14] C M ZHOU, J L ZHANG, W Z YAO et al. Remarkably strong piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain structure of (K,Na)(Nb,Sb)O3-(Bi,Na)ZrO3- BaZrO3 ceramics. Journal of Alloys and Compounds(2020).
[15] H KIM, D S KIM, S J CHAE et al. Simultaneous realization of high
[16] Q LIU, X ZHANG, J GAO et al. Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence. National Science Reveal(2020).
[17] H L DU, M ZHANG, X L SU et al. Developments of grain oriented growth techniques of piezoelectric ceramics. Journal of Inorganic Materials(2008).
[18] G S LEE, J S KIM, S H KIM et al. Recent developments in (K,Na)NbO3-based lead-free piezoceramics. Micromachines(2024).
[19] P LI, J W ZHAI, B SHEN et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Advanced Materials(2018).
[20] D S KIM, J M EUM, S H GO et al. Remarkable piezoelectric performance and good thermal stability of <001>-textured 0.96(K0.5Na0.5)(Nb1-
[21] S H GO, H KIM, D S KIM et al. Improvement of piezoelectricity of (Na, K)Nb-based lead-free piezoceramics using [001]-texturing for piezoelectric energy harvesters and actuators. Journal of the European Ceramic Society(2022).
[22] D LIU, L F ZHU, T TANG et al. Textured potassium sodium niobate lead-free ceramics with high
[23] T ZHENG, Y G YU, H B LEI et al. Compositionally graded KNN-based multilayer composite with excellent piezoelectric temperature stability. Advanced Materials(2022).
[24] A Z SONG, Y X LIU, T Y FENG et al. Simultaneous enhancement of piezoelectricity and temperature stability in KNN-based lead-free ceramics
[25] J B ZHAO, H L DU, S B QU et al. Improvement in the piezoelectric temperature stability of (K0.5Na0.5)NbO3 ceramics. Chinese Science Bulletin(2011).
[26] B Y YIN, Y HUAN, Z X WANG et al. Enhanced thermal reliability of Mn-doped (K, Na)NbO3-based piezoelectric ceramics. Journal of Materials Science: Materials in Electronics(2019).
[27] Y CHENG, J XING, X LI et al. Meticulously tailoring phase boundary in KNN-based ceramics to enhance piezoelectricity and temperature stability. Journal of the American Ceramic Society(2022).