• Acta Optica Sinica
  • Vol. 35, Issue 4, 406005 (2015)
Xiao Yi1、2、*, Zhang Jun1、2, Cai Xiang3, Tan Shaozao4, Chen Zhe1、2, Yu Jianhui1、2, Lu Huihui1、2, Liao Guozhen1, Li Shiping1、2, Tang Jieyuan1、2, and Luo Yunhan1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/aos201535.0406005 Cite this Article Set citation alerts
    Xiao Yi, Zhang Jun, Cai Xiang, Tan Shaozao, Chen Zhe, Yu Jianhui, Lu Huihui, Liao Guozhen, Li Shiping, Tang Jieyuan, Luo Yunhan. Fiber-Optic Humidity Sensing Based on Graphene[J]. Acta Optica Sinica, 2015, 35(4): 406005 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov, et al.. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.

    [2] K S Novoselov, Z Jiang, Y Zhang, et al.. Room-temperature Quantum Hall effect in graphene [J]. Science, 2007, 315(5817): 1379.

    [3] Y B Zhang, Y W Tan, H L Stormer, et al.. Experimental observation of the Quantum Hall effect and Berry′s phase in graphene [J]. Nature, 2005, 438(7065): 201-204.

    [4] K S Novoselov, E Mccann, S V Morozov, et al.. Unconventional Quantum Hall effect and Berry′s phase of 2p in bilayer graphene [J]. Nature Physics, 2006, 2(3): 177-180.

    [5] Z Jiang, Y Zhang, H L Stormer, et al.. Quantum Hall states near the charge-neutral Dirac point in graphene [J]. Phys Rev Lett, 2007, 99(10): 106802.

    [6] K S Novoselov, A K Geim, S V Morozov, et al.. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065): 197-200.

    [7] S V Morozov, K S Novoselov, M I Katsnelson, et al.. Giant intrinsic carrier mobilities in graphene and its bilayer [J]. Phys Rev Lett, 2008, 100(1): 016602.

    [8] K I Bolotin, K J Sikes, Z Jiang, et al.. Ultrahigh electron mobility in suspended graphene [J]. Solid State Commun, 2008, 146(9-10): 351-355.

    [9] S A Mikhailov, K Ziegler. New electromagnetic mode in graphene [J]. Phys Rev Lett, 2007, 99(1): 016803.

    [10] M Jablan, H Buljan, M Soljacic. Plasmonics in graphene at infrared frequencies [J]. Phys Rev B, 2009, 80(24): 245435.

    [11] F H L Koppens, G E Chang, F J G de Abajo. Graphene plasmonics: A platform for strong light-matter interacting [J]. Nano Lett, 2011, 11(8): 3370-3377.

    [12] A Vakil, N Engheta. Transformation optics using graphene [J]. Science, 2011, 332(6035): 1291-1294.

    [13] F Schedin, A K Geim, S V Morozov, et al.. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials, 2007, 6(9): 652-655.

    [14] L A Mashat, K Shin, K K Zadeh, et al.. Graphene/Polyaniline nanocomposite for hydrogen sensing [J]. J Phys Chem C, 2010, 114(39): 16168-16173.

    [15] J T Robinson, F K Perkins, E S Snow, et al.. Reduced graphene oxide molecular sensors [J]. Nano Lett, 2008, 8(10): 3137-3140.

    [16] G H Lu, L E Ocola, J H Chen. Reduced graphene oxide for room- temperature gas sensors [J]. Nanotechnology, 2009, 20(44): 445502.

    [17] G H Lu, L E Ocola, J H Chen. Gas detection using low-temperature reduced graphene oxide sheets [J]. Appl Phys Lett, 2009, 94(8): 083111.

    [18] J D Fowler, M J Allen, V C Tung, et al.. Practical chemical sensors from chemically derived graphene [J]. ACS Nano, 2009, 3(2): 301-306.

    [19] H Y Jeong, D S Lee, H K Choi, et al.. Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films [J]. Appl Phys Lett, 2010, 96(21): 213105.

    [20] G S Kulkarni, K Reddy, Z H Zhong, et al.. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection [J]. Nature Communications, 2014, 5(4376): 1-7.

    [21] M C Chen, C L Hsu, T J Hsueh. Fabrication of humidity sensor based on bilayer graphene [J]. IEEE Electron Device Letters, 2014, 35(5): 590-592.

    [22] P G Su, C F Chiou. Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate [J]. Sensors and Actuators B, 2014, 200: 9-18.

    [23] D Z Zhang, J Tong, B K Xia. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly [J]. Sensors and Actuators B, 2014, 197: 66-72.

    [24] M Liu, X B Yin, E U Avila, et al.. A graphene-based broadband optical modulator [J]. Nature, 2011, 474(7349): 64-67.

    [25] S J Koester, M Li. High-speed waveguide-coupled graphene-on-graphene optical modulators [J]. Appl Phys Lett, 2012, 100(17): 171107.

    [26] W Li, B G Chen, C Meng, et al.. Ultrafast all-optical graphene modulator [J]. Nano Letters, 2014, 14(2): 955-959.

    [27] Q L Bao, H Zhang, B Wang, et al.. Broadband graphene polarizer [J]. Nature Photonics, 2011, 5(7): 411-415.

    [28] J T Kim, C G Choi. Graphene-based polymer waveguide polarizer [J]. Opt Express, 2012, 20(4): 3556-3562.

    [29] G W Hanson. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene [J]. J Appl Phys, 2008, 103(6): 064302.

    [30] Liao Guozhen, Zhang Jun, Cai Xiang, et al.. All-fiber temperature sensor based on graphene [J]. Acta Optica Sinica, 2013, 33(7): 0706004.

    [31] A Gaston, F Perez, J Sevilla. Optical fiber relative-humidity sensor with polyvinyl alcohol film [J]. Appl Opt, 2004, 43(2): 4127-4132.

    [32] Han Yuqi, Chen Zhe, Yu Jianhui, et al.. Side-polished fiber sensing for measurement of nematic liquid crystal orientation [J]. Acta Optica Sinica, 2014, 34(2): 0206006.

    [33] Chen Xiaolong, Luo Yunhan, Xu Mengyun, et al.. Refractive index and temperature sensing based on surface plsmon resonance fabricated on a side-polished fiber [J]. Acta Optica Sinica, 2014, 34(2): 0206005.

    [34] W S Hummers, Jr R E Offeman. Preparation of graphitic oxide [J]. J Am Chem Soc, 1958, 80(6): 1339.

    [35] X Cai, S Z Tan, A G Xie, et al.. Conductive methyl blue- functionalized reduced graphene oxide with excellent stability and solubility in water [J]. Materials Research Bulletin, 2011, 46(12): 2353-2358.

    [36] Jiang Peifan, Chen Zhe, Zeng Yingxin, et al.. Optical propagation characteristics of side- polished fibers [J]. Semiconductor Optoelectronics, 2006, 27(5): 578-581.

    [37] A C Ferrari, J C Meyer, V Scardaci, et al.. Raman spectrum of graphene and graphene layers [J]. Phys Rev Lett, 2006, 97(18): 187401.

    [38] C Bariain, I R Matias, F I Arregui, et al.. Optical fiber humidity sensor based on a tapered fiber coated with agarose gel [J]. Sensors and Actuators B, 2000, 69(1-2): 127-131.

    [39] B D Gupta, Ratnanjali. Novel probe for a fiber optic humidity sensor [J]. Sensors and Actuators B, 2001, 80(2): 132-135.

    [40] S K Khijwania, K L Srinivasan, J P Singh. An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity [J]. Sensors and Actuators B, 2005, 104(2): 217-222.

    [41] L Xia, L C Li, W Li, et al.. Novel optical fiber humidity sensor based on a no-core fiber structure [J]. Sensors and Actuators A, 2013, 190: 1-5.

    [42] J M Corres, J Bravo, I R Matias. Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms [J]. IEEE Photon Technol Lett, 2006, 18(8): 935-937.

    CLP Journals

    [1] Li Chen, Lu Xueqi, Yu Caibin, Wu Fan, Wu Yu. Fiber-Optic Acoustic Sensor Based on Multi-Layered Graphene Material[J]. Acta Optica Sinica, 2018, 38(3): 328017

    [2] Cai Qiang, Fang Yuntuan. Study on Wide-Angle High-Absorption Based on Graphene Metamaterials[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81601

    [3] Luo Fang, Wang Weibin, Lu Xiaoxiao, Yao Jianhua. Micromorphology and Crystallinity of Nano-Graphite Transformation Products After Laser Irradiation[J]. Chinese Journal of Lasers, 2016, 43(10): 1002006

    [4] Zhuang Lingping, Zhang Xiongjun, Zhang Jun, Wu Dengsheng, Tian Xiaolin. Study of Repetition-Rate Electro-Optic Switch Based on Transparent Conductive Films[J]. Laser & Optoelectronics Progress, 2016, 53(1): 12303

    [5] Huang Meng, Gu Changsheng, Sun Bing, Yang Conghao, Yu Kehan, Zhang Zuxing. Refractive Index Sensor Based on Tilted-Fiber Bragg Grating Coated with Graphene[J]. Chinese Journal of Lasers, 2017, 44(12): 1210001

    [6] Xiao Yi, Zheng Zhendong, Li Kunxiao, Liang Zhenrong, Ma Kezhen, Chen Yilin. Fiber-Optic Toluene Gas Sensor Based on Graphene[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60604

    Xiao Yi, Zhang Jun, Cai Xiang, Tan Shaozao, Chen Zhe, Yu Jianhui, Lu Huihui, Liao Guozhen, Li Shiping, Tang Jieyuan, Luo Yunhan. Fiber-Optic Humidity Sensing Based on Graphene[J]. Acta Optica Sinica, 2015, 35(4): 406005
    Download Citation