• Laser & Optoelectronics Progress
  • Vol. 53, Issue 4, 41101 (2016)
Zhang Hong*, Feng Jihong, and Zhang Sen
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.041101 Cite this Article Set citation alerts
    Zhang Hong, Feng Jihong, Zhang Sen. Effect of Numerical Aperture on Focal Spot of Radially Polarized Beam in Stimulated Emission Depletion Microscopy[J]. Laser & Optoelectronics Progress, 2016, 53(4): 41101 Copy Citation Text show less
    References

    [1] Xiao Yun, Zhang Yunhai, Yang Haomin, et al.. Focusing of high numerical aperture azimuthally polarized beams[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031801.

    [2] Yan Jie, Lu Yonghua, Wang Pei, et al.. Study of focal spot of radially polarized beam[J]. Acta Optica Sinica, 2010, 30(12): 3597-3603.

    [3] Lieb M A, Meixner A J. A high numerical aperture parabolic mirror as imaging device for confocal microscopy[J]. Opt Express, 2001, 8(7): 458-474.

    [4] Ren Guangsen, Wu Wuming, Ning Yu, et al.. Tight focusing of a radially polarized coherent beams array[J]. Chinese J Lasers, 2014, 41(1): 0102003.

    [5] Zhou Z H, Tan Q F, Jin G F. Focusing of high polarization order axially-symmetric polarized beams[J]. Chin Opt Lett, 2009, 7(10): 938-940.

    [6] Youngworth K S, Brown T G. Inhomogeneous polarization in scanning optical microscopy[C]. SPIE, 2000, 3919: 75-85.

    [7] Zhan Q W, Leger J R. Microellipsometer with radial symmetry[J]. Appl Opt, 2002, 41(22): 4630-4637.

    [8] Huang B, Hazen B, Zhuang X W. Breaking the diffraction barrier: Super-resolution imaging of cells[J]. Cell, 2010, 143(7): 1047-1058.

    [9] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780-782.

    [10] Wu Meirui, Yang Xibin, Xiong Daxi, et al.. Structured illumination fluorescence microscopy: Diffraction-limit breaking principle and application in life science[J]. Laser & Optoelectronics Progress, 2015, 52(1): 010003.

    [11] Hao X, Kuang C F, Wang T T, et al.. Effects of polarization on the de-excitation dark focal spot in STED microscopy[J]. J Opt, 2010, 12(11): 115707.

    [12] Testa I, Urban N T, Jakobs S, et al.. Nanoscopy of living brain slices with low light levels[J]. Neuron, 2012, 75(6): 992-1000.

    [13] Hell S W. Breaking Abbe′s barrier: Diffraction-unlimited resolution in far-field microscopy[J]. Cytometry Part A, 2007, 71A (9): 742-743.

    [14] Moneron G, Hell S W. Two-photon excitation STED microscopy[J]. Opt Express, 2009, 17(17): 14567-14573.

    [15] Xiong Mengsu, Ding Panfeng, Pu Jixiong. Analysis on the beam characteristic of Gaussian beam passing multi-level spiral phase plate[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081902.

    [16] Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system [J]. Proc Roy Soc A, 1959, 253(1247): 358-379.

    [17] Wolf E. Electromagnetic diffraction in optical systems. I. An integral representation of the image field[J]. Proc Roy Soc A, 1959, 253(1274): 349-357.

    [18] Youngworth K S, Brown G. Focusing of high numerical aperture cylindrical-vector beams[J]. Opt Express, 2000, 7(2): 77- 87.

    [19] Guo Xiaohu, Zhao Yuejin, Dong Liquan, et al.. Analysis of effect of phase plate decenter on wavefront coding imaging[J]. Chinese J Lasers, 2015, 42(8): 0809002.

    [20] Westphal V, Blanca C M, Dyba M, et al.. Laser-diode-stimulated emission depletion microscopy[J]. Appl Phys Lett, 2003, 82(18): 3125-3127.

    [21] Westphal V, Kastrup L, Hell S W. Lateral resolution of 28 nm (l/25) in far-field fluorescence microscopy[J]. Appl Phys, 2003, 77(4): 377-380.

    Zhang Hong, Feng Jihong, Zhang Sen. Effect of Numerical Aperture on Focal Spot of Radially Polarized Beam in Stimulated Emission Depletion Microscopy[J]. Laser & Optoelectronics Progress, 2016, 53(4): 41101
    Download Citation