• Infrared and Laser Engineering
  • Vol. 47, Issue 3, 306002 (2018)
Zhou Yongsheng*, Ma Xunpeng, Zhao Yiming, and Li Lianghai
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201847.0306002 Cite this Article
    Zhou Yongsheng, Ma Xunpeng, Zhao Yiming, Li Lianghai. Frequency estimation of the weak signal of the Coherent Wind Lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 306002 Copy Citation Text show less
    References

    [1] Jia Xiaodong. Development of 1.55 μm coherent lidar for wind sensing [D]. Beijing: University of Science and Technology of China, 2015. (in Chinese)

    [2] Rod Frehlich, Robert Sharman. Maximum likelihood estimates of vortex parameters from simulated coherent doppler lidar data[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(2): 117-130.

    [3] Liu Yin′en. The study of high-precision frequency estimation [D]. Nanjing: Nanjing University of Science and Technology, 2007. (in Chinese)

    [4] Saman S Abeysekera. Efficient frequency estimation using the pulse-pair ′method at various lags′[J]. IEEE Transactions on Communications, 2006, 54(12): 1542-1546.

    [5] Saman S Abeysekera. Performance of pulse-pair method of Doppler estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 520-531.

    [6] Qi Guoqing, Jia Xinyue. Accuracy analysis of frequency estimation of sinusoid based on interpolated FFT[J]. Acta Electronica Sinica, 2004, 32(4): 625-629. (in Chinese)

    [7] Zhang Jian. Signal extraction and simulation for 2 μm coherent wind lidar[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese)

    [8] Thomas Grandke. Interpolation algorithms for discrete Fourier transforms of weighted signals[J]. IEEE Transactions on Instrumentation and Measurement, 1983, 32(2): 350-355.

    [9] Hu Yang, Zhu Heyuan. 1.55 μm all-fiber coherent Doppler lidar for wind measurement[J]. Infrared and Laser Engineering, 2016, 45(S1): S130001. (in Chinese)

    [10] Zhu Hao, Liu Wenyao, Hao Yongjie, et al. Study on pulse-to-pulse algorithm for measuring acoustic frequency offset [J]. Chinese Journal of Sensors and Actuators, 2005, 18(1): 195-200. (in Chinese)

    [11] Zhu Hao, Liu Wenyao, Wang Xiaodong, et al. Implementation of pulse-to-pulse algorithm on ADCP for measuring velocity[J]. Computer Engineering, 2005, 31(21): 48-50. (in Chinese)

    [12] Zhai Shenghua. Study of a high-precision frequency estimation algorithm [J]. Space Electronic Technology, 2004(1): 64-67. (in Chinese)

    [13] Pan Jingyan, Wu Shuangyang, Liu Guo, et al. Wind measurement techniques of coherent wind lidar [J]. Infrared and Laser Engineering, 2013, 42(7): 1721-1724. (in Chinese)

    [14] Jia Xiaodong, Sun Dongsong. Maximum likelihood discrete spectral peak estimation in coherent wind lidar and Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2015, 27(6): 061013. (in Chinese)

    [15] Li Li, Wang Canzhao, Xie Yafeng. Wind field inversion technique for scanning wind lidar [J]. Chinese Optics, 2013, 6(2): 251-258. (in Chinese)

    [16] Zhang Qingyuan. Comprehensive information processing system of helicopter anticollision laser radar [J]. Chinese Optics, 2013, 6(2): 80-87. (in Chinese)

    CLP Journals

    [1] Zhuang Zibo, Chen Xing, Tai Hongda, Song Delong, Xu Fengtian, Xing Zhiwei. Horizontal wind field estimation method based on dual Lidars[J]. Infrared and Laser Engineering, 2019, 48(10): 1005008

    Zhou Yongsheng, Ma Xunpeng, Zhao Yiming, Li Lianghai. Frequency estimation of the weak signal of the Coherent Wind Lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 306002
    Download Citation