• Infrared Technology
  • Vol. 44, Issue 6, 543 (2022)
Yixin GUO*, Weiqi JIN, Yuqing HE, and Man ZHAO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    GUO Yixin, JIN Weiqi, HE Yuqing, ZHAO Man. Remote Raman Spectroscopy in Natural Environments[J]. Infrared Technology, 2022, 44(6): 543 Copy Citation Text show less
    References

    [1] Guozhen W. Raman Spectroscopy: An Intensity Approach[M]. Beijing: Science Press, 2016.56

    [2] Colthup N. Introduction to Infrared and Raman Spectroscopy[M]. Amsterdam: Elsevier, 2012.

    [4] Okuno M, Hamaguchi H. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells[J]. Optics Letters, 2012, 35(24): 4096-4098.

    [5] Schlucker S, Kiefer W. Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications[J]. Analytical and Bioanalytical Chemistry, 2011, 401(8): 2329-2330.

    [6] Cooney J. Satellite observations using Raman component of laser backscatter[C]//Proceedings of the Symposium on Electromagnetic Sensing of the Earth from Satellites, New York: Polytechnic Institute of Brooklyn Press, 1967, 1-10.

    [7] Leonared D A. Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser[J]. Nature, 1967, 216(5111): 142-143.

    [8] Hirschfeld T. Range independence of signal in variable focus remote Raman spectrometry[J]. Applied Optics, 1974, 13(6): 1435-1437.

    [9] Raymond M. Laser Remote Sensing: Fundamentals and Applications[M]. New York: John Wiley & Sons, 1984.

    [10] Wu M, Ray M, Fung K H, et al. Stand-off detection of chemicals by UV Raman spectroscopy[J]. Applied Spectroscopy, 2000, 54(6): 800-806.

    [11] Ray M D, Sedlacek A J, WU M. Ultraviolet mini-Raman lidar for standoff, in situ identification of chemical surface contaminants[J]. Review of Scientific Instruments, 2000, 71(9): 3485-3489.

    [12] Wallin S, Pettersson A, Ostmark H, et al. Laser-based stand-off detection of explosives: a critical review[J]. Analytical and Bioanalytical Chemistry, 2009, 395(2): 259-274.

    [13] Angel S M, Kulp T J, Vess T M. Remote-Raman spectroscopy at intermediate ranges using low-power cw lasers[J]. Applied Spectroscopy, 1992, 46(7): 1085-1091.

    [14] Sharma S K, Angel S M, Ghosh M, et al. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters[J]. Applied Spectroscopy, 2002, 56(6): 699-705.

    [15] Sharma S K, Lucey P G, Ghosh M, et al. Stand-off Raman spectroscopic detection of minerals on planetary surfaces[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 23912407.

    [16] Misra A K, Sharma S K, Chio C H, et al. Pulsed remote Raman system for daytime measurements of mineral spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 22812287.

    [17] Misra A K, Sharma S K, Lucey P G. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse[J]. Applied Spectroscopy, 2006, 60(2): 223-228.

    [18] Carter J C, Scaffidi J, Burnett S, et al. Stand-off Raman detection using dispersive and tunable filter based systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 22882298.

    [19] Carter J C, Angel S M, Lawrence-Snyder M, et al. Stand-off detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Applied Spectroscopy, 2005, 59(6): 769-775.

    [20] Pettersson A, Johansson I, Wallin S, et al. Near Real-Time stand-off detection of explosives in a realistic outdoor environment at 55 m distance[J]. Propellants Explosives Pyrotechnics, 2009, 34(4): 297-306.

    [21] Fleger Y, Nagli L, Gaft M, et al. Narrow gated Raman and luminescence of explosives[J]. Journal of Luminescence, 2009, 129(9): 979-983.

    [22] Sharma S K, Misra A K, Clegg S M, et al. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1922): 3167-3191.

    [23] Ramirez-Cedeno M L, Ortiz-Rivera W, Pacheco-Londono L C, et al. Remote detection of hazardous liquids concealed in glass and plastic containers[J]. IEEE Sensors Journal, 2010, 10(3): 693-698.

    [24] Pettersson A, Wallin S, Ostmark H, et al. Explosives stand-off detection using Raman spectrpscopy: from bulk towards trace detection [C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, 2010: 7664: 76641K.

    [25] Rull F, Vegas A, Sansano A, et al. Analysis of arctic ices by remote Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 80(1): 148-155.

    [26] Chung J H, Cho S G. Nanosecond gated Raman spectroscopy for standoff detection of hazardous materials[J]. Bulletin-Korean Chemical Society, 2014, 35(12): 3547-3552.

    [27] Gulati K K, Gambhir V, Reddy M N. Detection of nitro-aromatic compound in soil and sand using time gated Raman spectroscopy[J]. Defence Science Journal, 2017, 67(5): 588-591.

    [28] Guimbretiere, G, Duraipandian S, Ricci T. Field remote stokes/anti-stokes Raman characterization of sulfur in hydrothermal vents[J]. Journal of Raman Spectroscopy, 2018, 49: 1385-1394.

    [29] Kubitza S, Schroder S, Rammelkamp K, et al. Evaluation of close-up remote cw-Raman spectroscopy for in-situ planetary exploration [C]//50th Lunar and Planetary Science Conference, 2019, 2132: 24212425.

    [30] Misra A K, Acosta-Maeda T E, Porter J N, et al. A two components approach for long range remote Raman and laser-induced breakdown (LIBS) spectroscopy using low laser pulse energy[J]. Applied Spectroscopy, 2019, 73(3): 320-328.

    [31] Egan M J, Acosta -Maeda T E, Angel S M, et al. One-mirror, one-grating spatial heterodyne spectrometer for remote-sensing Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2020, 51: 1794-1801.

    [32] Gasser C, Gonzalez-Cabrera M, Ayora -Canada M J, et al. Comparing mapping and direct hyperspectral imaging in stand-off Raman spectroscopy for remote material identification[J]. Journal of Raman Spectroscopy, 2019, 50: 1034-1043.

    [33] Misra A K, Acosta-Maeda T E, Porter J N, et al. Remote Raman detection of chemicals from 1752 m during afternoon daylight[J]. Applied Spectroscopy, 2019, 74(2): 233-240.

    [34] Sandford M W, Misra A K, Acosta-Maeda T E, et al. Detecting minerals and organics relevant to planetary exploration using a compact portable remote Raman system at 122 meters[J]. Applied Spectroscopy, 2021, 75(3): 299-306.

    [41] Mccain S T, Guenther B D, Brady D J, et al. Coded-aperture Raman imaging for standoff explosive detection[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII, 2012, 8358: 83580Q.

    [42] Chirico R, Almaviva S, Botti S, et al. Stand-off detection of traces of explosives and precursors on fabrics by UV Raman spectroscopy[C]// Optics and Photonics for Counterterrorism, Crime Fighting, and Defence VIII, 2012, 8546: 8546: 283-287.

    [43] Fulton J. Remote detection of explosives using Raman spectroscopy[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII, 2011, 8018(1): 413-413.

    [44] Almaviva S, Angelni F, Chirico R, et al. Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration[C]//Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology XI, 2014, 9253: 925303.

    [45] Glimtoft M, Baath P, Saari H, et al. Towards eye-safe standoff Raman imaging systems[C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIX, 2014, 9072: 907210.

    [46] Carroll J A, Izake E L, Cletus B, et al. Eye-safe UV stand-off Raman spectroscopy for the ranged detection of explosives in the field[J]. Journal of Raman Spectroscopy, 2015, 46(3): 333-338.

    [47] Sharma S K, Ismail S, Angel S M, et al. Remote Raman and laser-induced fluorescence (RLIF) emission instrument for detection of mineral, organic, and biogenic materials on Mars to 100 meters radial distance[C]//Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, 2004, 5660: 128-138.

    [48] Gaft M, Nagli L. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11): 1739-1746.

    [49] Yellampalle B, Lemoff B E. Raman albedo and deep-UV resonance Raman signatures of explosives[C]//Active and Passive Signatures IV, 2013, 8734: 87340G.

    [51] Kozu T, Yamaguchi M, Kawaguchi M, et al. Evaluating of diamond like carbon using deep UV Raman spectroscopy[J]. Integrated Ferroelectrics, 2013, 157(1): 147-156.

    [52] Skulinova M, Lefebvre C, Sobron P, et al. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration[J]. Planetary and Space Science, 2014, 92: 88-100.

    [53] Almaviva S, Chirico R, Nuvoli M, et al. A new eye-safe UV Raman spectrometer for the remote detection of energetic materials in fingerprint concentrations: characterization by PCA and ROC analyzes[J]. Talanta, 2015, 144(8): 420.

    [54] Chirico R, Almaviva S, Colao F, et al. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications[J]. Sensors, 2016, 16(1): 8.

    [55] Lamsal N, Barnett P, Angel S M, et al. Remote UV Raman spectroscopy for planetary exploration using a miniature spatial heterodyne Raman spectrometer[C]//Lunar and Planetary Science Conference, 2016: 1500-1510.

    [56] Lamsal N, Sharma S K, Acosta T E, et al. Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer[J]. Applied Spectroscopy, 2016, 70(4): 666-675.

    [57] Hopkins A J, Cooper J L, Profeta L T M, et al. Portable deep-ultraviolet (DUV) Raman for standoff detection[J]. Applied Spectroscopy, 2016, 70(5): 861-873.

    [58] Hufziger K T, Bykov S V, Asher S A. Ultraviolet Raman wide-field hyperspectral imaging spectrometer for standoff trace explosive detection[J]. Applied Spectroscopy, 2017, 71(2): 173-185.

    [59] Shkolyar S, Eshelman E J, Farmer J D, et al. Detecting kerogen as a biosignature using colocated UV time-gated Raman and fluorescence spectroscopy[J]. Astrobiology, 2018, 18(4): 431-453.

    [60] Gulati K K, Gulia S, Kumar N, et al. Real-time stand-off detection of improvised explosive materials using time-gated UV-Raman spectroscopy[J]. Pramana, 2019, 92(2): 1-5.

    [61] Cantu L, Gallo E, Duschek F. Remote Raman scattering detection of explosives[C]//ODAS (ONERA-DLR Aerospace Symposium)-MOTAR (Measurement and Optical Techniques for Aerospace Research), 2021: (DOI:https://elib.dlr.de/141626/).https://www.researchgate.net/publica tion/351072675_REMOTE_RAMAN_SCATTERING_DETECTION_ OF_EXPLOSIVES.

    [62] Gallo E, Duschek F. Deep-UV remote Raman detection of chlorine[C]//OSA Optical Sensors and Sensing Congress, 2021: DOI: https://elib.dlr.de/143249/.

    [66] ZHANG W, ZHOU R, LIU K, et al. Sulfur determination in laser-induced breakdown spectroscopy combined with resonance Raman scattering[J]. Talanta, 2020, 216: 120968-120976.

    [67] SI G, FANGY, LIU J, et al. A new eye-safe compact UV-Raman spectroscopy setup for the proximal detection of hazardous chemicals[C]//AOPC 2021: Optical Spectroscopy and Imaging, 2021, 12064: 99-105.

    [68] Hagen N, Brady D J. Coded-aperture DUV spectrometer for stand-off Raman spectroscopy[C]//Next-Generation Spectroscopic Technologies II, 2009, 7319: 73190D.

    [69] Yellampalle B, Martin R, Witt K, et al. Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVIII, 2017, 10183: 101830E.

    GUO Yixin, JIN Weiqi, HE Yuqing, ZHAO Man. Remote Raman Spectroscopy in Natural Environments[J]. Infrared Technology, 2022, 44(6): 543
    Download Citation