• Advanced Photonics Nexus
  • Vol. 1, Issue 2, 026003 (2022)
Bing-Yan Wei1、2、†,*, Yuan Zhang3, Haozhe Xiong1、2, Sheng Liu1、2、*, Peng Li1、2, Dandan Wen1、2, and Jianlin Zhao1、2、*
Author Affiliations
  • 1Northwestern Polytechnical University, School of Physical Science and Technology, Shaanxi Key Laboratory of Optical Information Technology, Xi’an, China
  • 2Ministry of Industry and Information Technology, Key Laboratory of Light Field Manipulation and Information Acquisition, Xi’an, China
  • 3Chinese Flight Test Establishment, Xi’an, China
  • show less
    DOI: 10.1117/1.APN.1.2.026003 Cite this Article Set citation alerts
    Bing-Yan Wei, Yuan Zhang, Haozhe Xiong, Sheng Liu, Peng Li, Dandan Wen, Jianlin Zhao. Janus vortex beams realized via liquid crystal Pancharatnam–Berry phase elements[J]. Advanced Photonics Nexus, 2022, 1(2): 026003 Copy Citation Text show less
    References

    [1] A. Forbes, M. D. Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [2] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [3] S. Fu et al. Orbital angular momentum comb generation from azimuthal binary phases. Adv. Photonics Nexus, 1, 016003(2022).

    [4] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [5] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [6] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [7] J. Ni et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl., 6, e17011(2017).

    [8] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [9] L. Yan et al. Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy. Optica, 2, 900-903(2015).

    [10] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [11] X. L. Wang et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516-519(2015).

    [12] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2020).

    [13] J. H. Lee et al. Experimental verification of an optical vortex coronagraph. Phys. Rev. Lett., 97, 053901(2006).

    [14] D. G. Papazoglou, V. Y. Fedorov, S. Tzortzakis. Janus waves. Opt. Lett., 41, 4656-4659(2016).

    [15] D. G. Papazoglou et al. Observation of abruptly autofocusing waves. Opt. Lett., 36, 1842-1844(2011).

    [16] P. Zhang et al. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett., 36, 2883-2885(2011).

    [17] P. Panagiotopoulos et al. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat. Commun., 4, 2622(2013).

    [18] N. K. Efremidis et al. Airy beams and accelerating waves: an overview of recent advances. Optica, 6, 686-701(2019).

    [19] A. D. Koulouklidis et al. Phase memory preserving harmonics from abruptly autofocusing beams. Phys. Rev. Lett., 119, 223901(2017).

    [20] W. Yu et al. Propagation dynamics of Janus vortex waves. Opt. Express, 27, 34484-34495(2019).

    [21] P. Chen et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [22] P. Chen et al. “Chirality invertible superstructure mediated active planar optics. Nat. Commun., 10, 2518(2019).

    [23] P. Chen et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv. Mater., 32, 1903665(2020).

    [24] C. T. Xu et al. Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures. Appl. Phys. Lett., 118, 151102(2021).

    [25] L. Zhu et al. Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures. Light Sci. Appl., 11, 135(2022).

    [26] R. Yuan et al. Spin-decoupled transflective spatial light modulations enabled by a piecewise-twisted anisotropic monolayer. Adv. Sci., 9, 2202424(2022).

    [27] S. Liu et al. Analogous optical activity in free space using a single Pancharatnam–Berry phase element. Laser Photonics Rev., 16, 2100291(2022).

    [28] S. Liu et al. Controllable oscillated spin Hall effect of Bessel beam realized by liquid crystal Pancharatnam–Berry phase elements. Light Sci. Appl., 11, 219(2022).

    [29] Y. Jiang, K. Huang, X. Lu. Propagation dynamics of abruptly autofocusing Airy beams with optical vortices. Opt. Express, 20, 18579-18584(2012).

    [30] B. Chen et al. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Opt. Express, 23, 19288-19298(2015).

    [31] I. Chremmos et al. Fourier-space generation of abruptly autofocusing beams and optical bottle beams. Opt. Lett., 36, 3675-3677(2011).

    [32] Y. Zhang et al. Circular Airy beams realized via the photopatterning of liquid crystals. Chin. Opt. Lett., 18, 080008(2020).

    [33] B. Wei et al. Liquid-crystal splitter for generating and separating autofocusing and autodefocusing circular Airy beams. Opt. Express, 28, 26151-26160(2020).

    [34] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [35] B. Y. Wei et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater., 26, 1590-1595(2014).

    [36] P. Chen et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photonics Res., 3, 133-139(2015).

    [37] B. Y. Wei et al. Liquid crystal depolarizer based on photoalignment technology. Photonics Res., 4, 70-73(2016).

    [38] T. Lei et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [39] R. Xu et al. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Phys. Rev. Appl., 10, 034061(2018).

    [40] H. Zhang et al. All-dielectric metasurface-enabled multiple vortex emissions. Adv. Mater., 34, 2109255(2022).

    [41] S. Liu et al. A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam–Berry phase. Appl. Phys. Lett., 110, 171112(2017).

    [42] K. Wang et al. Deep learning spatial phase unwrapping: a comparative review. Adv. Photonics Nexus, 1, 014001(2022).

    [43] B. Wei et al. Auto-transition of vortex- to vector-Airy beams via liquid crystal q-Airy-plates. Opt. Express, 27, 18848-18857(2019).

    [44] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    Bing-Yan Wei, Yuan Zhang, Haozhe Xiong, Sheng Liu, Peng Li, Dandan Wen, Jianlin Zhao. Janus vortex beams realized via liquid crystal Pancharatnam–Berry phase elements[J]. Advanced Photonics Nexus, 2022, 1(2): 026003
    Download Citation