• Advanced Photonics Nexus
  • Vol. 1, Issue 2, 026003 (2022)
Bing-Yan Wei1,2,†,*, Yuan Zhang3, Haozhe Xiong1,2..., Sheng Liu1,2,*, Peng Li1,2, Dandan Wen1,2 and Jianlin Zhao1,2,*|Show fewer author(s)
Author Affiliations
  • 1Northwestern Polytechnical University, School of Physical Science and Technology, Shaanxi Key Laboratory of Optical Information Technology, Xi’an, China
  • 2Ministry of Industry and Information Technology, Key Laboratory of Light Field Manipulation and Information Acquisition, Xi’an, China
  • 3Chinese Flight Test Establishment, Xi’an, China
  • show less
    DOI: 10.1117/1.APN.1.2.026003 Cite this Article Set citation alerts
    Bing-Yan Wei, Yuan Zhang, Haozhe Xiong, Sheng Liu, Peng Li, Dandan Wen, Jianlin Zhao, "Janus vortex beams realized via liquid crystal Pancharatnam–Berry phase elements," Adv. Photon. Nexus 1, 026003 (2022) Copy Citation Text show less
    References

    [1] A. Forbes, M. D. Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [2] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [3] S. Fu et al. Orbital angular momentum comb generation from azimuthal binary phases. Adv. Photonics Nexus, 1, 016003(2022).

    [4] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [5] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [6] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [7] J. Ni et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl., 6, e17011(2017).

    [8] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [9] L. Yan et al. Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy. Optica, 2, 900-903(2015).

    [10] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [11] X. L. Wang et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516-519(2015).

    [12] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2020).

    [13] J. H. Lee et al. Experimental verification of an optical vortex coronagraph. Phys. Rev. Lett., 97, 053901(2006).

    [14] D. G. Papazoglou, V. Y. Fedorov, S. Tzortzakis. Janus waves. Opt. Lett., 41, 4656-4659(2016).

    [15] D. G. Papazoglou et al. Observation of abruptly autofocusing waves. Opt. Lett., 36, 1842-1844(2011).

    [16] P. Zhang et al. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett., 36, 2883-2885(2011).

    [17] P. Panagiotopoulos et al. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat. Commun., 4, 2622(2013).

    [18] N. K. Efremidis et al. Airy beams and accelerating waves: an overview of recent advances. Optica, 6, 686-701(2019).

    [19] A. D. Koulouklidis et al. Phase memory preserving harmonics from abruptly autofocusing beams. Phys. Rev. Lett., 119, 223901(2017).

    [20] W. Yu et al. Propagation dynamics of Janus vortex waves. Opt. Express, 27, 34484-34495(2019).

    [21] P. Chen et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [22] P. Chen et al. “Chirality invertible superstructure mediated active planar optics. Nat. Commun., 10, 2518(2019).

    [23] P. Chen et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv. Mater., 32, 1903665(2020).

    [24] C. T. Xu et al. Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures. Appl. Phys. Lett., 118, 151102(2021).

    [25] L. Zhu et al. Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures. Light Sci. Appl., 11, 135(2022).

    [26] R. Yuan et al. Spin-decoupled transflective spatial light modulations enabled by a piecewise-twisted anisotropic monolayer. Adv. Sci., 9, 2202424(2022).

    [27] S. Liu et al. Analogous optical activity in free space using a single Pancharatnam–Berry phase element. Laser Photonics Rev., 16, 2100291(2022).

    [28] S. Liu et al. Controllable oscillated spin Hall effect of Bessel beam realized by liquid crystal Pancharatnam–Berry phase elements. Light Sci. Appl., 11, 219(2022).

    [29] Y. Jiang, K. Huang, X. Lu. Propagation dynamics of abruptly autofocusing Airy beams with optical vortices. Opt. Express, 20, 18579-18584(2012).

    [30] B. Chen et al. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Opt. Express, 23, 19288-19298(2015).

    [31] I. Chremmos et al. Fourier-space generation of abruptly autofocusing beams and optical bottle beams. Opt. Lett., 36, 3675-3677(2011).

    [32] Y. Zhang et al. Circular Airy beams realized via the photopatterning of liquid crystals. Chin. Opt. Lett., 18, 080008(2020).

    [33] B. Wei et al. Liquid-crystal splitter for generating and separating autofocusing and autodefocusing circular Airy beams. Opt. Express, 28, 26151-26160(2020).

    [34] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [35] B. Y. Wei et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater., 26, 1590-1595(2014).

    [36] P. Chen et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photonics Res., 3, 133-139(2015).

    [37] B. Y. Wei et al. Liquid crystal depolarizer based on photoalignment technology. Photonics Res., 4, 70-73(2016).

    [38] T. Lei et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [39] R. Xu et al. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Phys. Rev. Appl., 10, 034061(2018).

    [40] H. Zhang et al. All-dielectric metasurface-enabled multiple vortex emissions. Adv. Mater., 34, 2109255(2022).

    [41] S. Liu et al. A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam–Berry phase. Appl. Phys. Lett., 110, 171112(2017).

    [42] K. Wang et al. Deep learning spatial phase unwrapping: a comparative review. Adv. Photonics Nexus, 1, 014001(2022).

    [43] B. Wei et al. Auto-transition of vortex- to vector-Airy beams via liquid crystal q-Airy-plates. Opt. Express, 27, 18848-18857(2019).

    [44] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    Bing-Yan Wei, Yuan Zhang, Haozhe Xiong, Sheng Liu, Peng Li, Dandan Wen, Jianlin Zhao, "Janus vortex beams realized via liquid crystal Pancharatnam–Berry phase elements," Adv. Photon. Nexus 1, 026003 (2022)
    Download Citation