• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20210685 (2021)
Zhenxu Bai1、2, Hui Chen1、2, Zhanpeng Zhang3, Kun Wang3, Jie Ding1、2, Yaoyao Qi1、2, Bingzheng Yan1、2, Sensen Li4, Xiusheng Yan4, Yulei Wang1、2, and Zhiwei Lv1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
  • 4Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
  • show less
    DOI: 10.3788/IRLA20210685 Cite this Article
    Zhenxu Bai, Hui Chen, Zhanpeng Zhang, Kun Wang, Jie Ding, Yaoyao Qi, Bingzheng Yan, Sensen Li, Xiusheng Yan, Yulei Wang, Zhiwei Lv. Hundred-watt dual-wavelength diamond Raman laser at 1.2 /1.5 μm (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210685 Copy Citation Text show less
    References

    [1] A Extance. Military technology: Laser weapons get real. Nature News, 521, 408(2015).

    [2] R J Williams, O Kitzler, Z Bai, et al. High power diamond Raman lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).

    [3] M N Zervas, C A Codemard. High power fiber lasers: A review. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [4] B J Comaskey, R Beach, G Albrecht, et al. High average powers diode pumped slab laser. IEEE Journal of Quantum Electronics, 28, 992-996(1992).

    [5] H Wang, L Lin, X Ye. Status and development trend of high power slab laser technology. Infrared and Laser Engineering, 49, 20190456(2020).

    [6] Koechner W. Solidstate Laser Engineering [M]. US: Springer, 2006.

    [7] V R Supradeepa, J W Nicholson. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers. Optics Letters, 38, 2538-2541(2013).

    [8] C Jauregui, C Stihler, J Limpert. Transverse mode instability. Advances in Optics and Photonics, 12, 429-484(2020).

    [9] Xiaowei Huo, Yaiyao Qi, Yuqi Li, et al. Research progress of LD-pumped Pr3+-doped solid-state laser in visible wavelength. Electro-optic Technology & Application, 34, 7-15(2019).

    [10] U Sharma, C S Kim, J U Kang. Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications. IEEE Photonics Technology Letters, 16, 1277-1279(2004).

    [11] R Akbari, H Zhao, A Major. High-power continuous-wave dual-wavelength operation of a diode-pumped Yb: KGW laser. Optics Letters, 41, 1601-1604(2016).

    [12] Q Deng, D Wu, Z Kuang, et al. 532 nm/660 nm dual wavelength lidar for self-calibration of water vapor mixing ratio. Infrared and Laser Engineering, 47, 1230004(2018).

    [13] S K Alavipanah, H R Matinfar, Emam A Rafiei, et al. Criteria of selecting satellite data for studying land resources. Desert, 15, 83-102(2010).

    [14] I D Vatnik, D V Churkin, S A Babin, et al. Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm. Optics Express, 19, 18486-18494(2011).

    [15] Z Bai, R J Williams, Ondrej Kitzler, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement. Optics Express, 26, 19797-19803(2018).

    [16] Boyd R W. Nonlinear Optics[M]. 3 ed, US: Academic Press, 2008.

    [17] H M Pask. The design and operation of solid-state Raman lasers. Progress in Quantum Electronics, 27, 3-56(2003).

    [18] J A Piper, H M Pask. Crystalline raman lasers. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).

    [19] V R Supradeepa, Y Feng, J W Nicholson. Raman fiber lasers. Journal of Optics, 19, 023001(2017).

    [20] Z Bai, R J Williams, H Jasbeer, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion. Optics Letters, 43, 563-566(2018).

    [21] Zhenxu Bai, Hui Chen, Yuqi Li, et al. Development of beam brightness enhancement based on diamond Raman conversion. Infrared and Laser Engineering, 50, 20200098(2021).

    [22] Mildren R P, Rabeau J R. Optical Engineering of Diamond [M]. Berlin: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.

    [23] Y Li, J Ding, Z Bai, et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser. High Power Laser Science and Engineering, 9, e35(2021).

    [24] Zhenxu Bai, Xuezong Yang, Hui Chen, et al. Research progress of high-power diamond laser technology (Invited). Infrared and Laser Engineering, 49, 20201076(2020).

    [25] E Granados, D J Spence, R P Mildren. Deep ultraviolet diamond Raman laser. Optics Express, 19, 10857-10863(2011).

    [26] X Yang, O Kitzler, D J Spence, et al. Diamond sodium guide star laser. Optics Letters, 45, 1898-1901(2020).

    [27] Y Li, Z Bai, H Chen, et al. Eye-safe diamond Raman laser. Results in Physics, 16, 102853(2020).

    [28] A Sabella, J A Piper, R P Mildren. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm. Optics Letters, 39, 4037-4040(2014).

    [29] S Antipov, A Sabella, R J Williams, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2= 15 beam. Optics Letters, 44, 2506-2509(2019).

    [30] X Yang, Z Bai, D Chen, et al. Widely-tunable single-frequency diamond Raman laser. Optics Express, 29, 29449-29457(2021).

    [31] R J Williams, O Kitzler, A McKay, et al. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping. Optics Letters, 39, 4152-4155(2014).

    [32] Z Bai, Z Zhang, K Wang, et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method. Nanomaterials, 11, 1572(2021).

    [33] S Antipov, R J Williams, A Sabella, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power. Optics Express, 28, 15232-15239(2020).

    [34] O Kitzler, A McKay, D J Spence, et al. Modelling and optimization of continuous-wave external cavity Raman lasers. Optics Express, 23, 8590-8602(2015).

    [35] R J Williams, D J Spence, O Lux, et al. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond. Optics Express, 25, 749-757(2017).

    [36] M Li, O Kitzler, R P Mildren, et al. Modelling and characterisation of continuous wave resonantly pumped diamond Raman lasers. Optics Express, 29, 18427-18436(2021).

    [37] O Lux, S Sarang, O Kitzler, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain. Optica, 3, 876-881(2016).

    [38] Q Sheng, R Li, A J Lee, et al. A single-frequency intracavity Raman laser. Optics Express, 27, 8540-8553(2019).

    [39] R Casula, J P Penttinen, M Guina, et al. Cascaded crystalline Raman lasers for extended wavelength coverage: Continuous-wave, third-Stokes operation. Optica, 5, 1406-1413(2018).

    CLP Journals

    [1] Zhiwei Lv, Zhongze Liu, Hui Chen, Duo Jin, Xin Hao, Wenqiang Fan, Yulei Wang, Zhenxu Bai. Review of multi-wavelength laser technology based on crystalline Raman conversion (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230420

    [2] Jianing Sun, Yulei Wang, Yu Zhang, Yaoyao Qi, Jie Ding, Bingzheng Yan, Zhenxu Bai, Zhiwei Lv. Thermal effect analysis of LD end-pumped Er:Yb:glass/Co:MALO crystal[J]. Infrared and Laser Engineering, 2023, 52(8): 20230349

    [3] Duo Jin, Zhenxu Bai, Wenqiang Fan, Yaoyao Qi, Jie Ding, Bingzheng Yan, Yulei Wang, Zhiwei Lv. Four times linewidth narrowing has been achieved in diamond Brillouin laser[J]. Infrared and Laser Engineering, 2023, 52(8): 20230295

    [4] Ziqin Qi, Wenjie Mao, Hongyan Wang, Xiaolong Zhu, Xinnan Qiu, Huanqia Lu, Haiyong Zhu. End-pumped Nd:YAG/Cr4+:YAG/KTA passive Q-switched cascade Raman laser[J]. Infrared and Laser Engineering, 2023, 52(10): 20230079

    [5] Yakai Zhang, Hui Chen, Zhenao Bai, Yajun Pang, Yulei Wang, Zhiwei Lv, Zhenxu Bai. Multi-wavelength red diamond Raman laser[J]. Infrared and Laser Engineering, 2023, 52(8): 20230329

    [6] Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337

    [7] LIU Shuo, ZHANG Yaqi, ZHAO Linwan, BAI Zhenxu. Research on Multi-core Hollow Core Photonic Band Gap Fiber for 2 μm Band Laser Transmission[J]. Electro-Optic Technology Application, 2023, 38(1): 21

    [8] Luda Wang, Weichong Wu, Zhanda Zhu, Zhenxu Bai, Yongling Hui, Hong Lei, Qiang Li. Dual wavelength output Nd: YAG solid-state laser based on spectral beam combining[J]. Infrared and Laser Engineering, 2024, 53(1): 20230411

    Zhenxu Bai, Hui Chen, Zhanpeng Zhang, Kun Wang, Jie Ding, Yaoyao Qi, Bingzheng Yan, Sensen Li, Xiusheng Yan, Yulei Wang, Zhiwei Lv. Hundred-watt dual-wavelength diamond Raman laser at 1.2 /1.5 μm (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210685
    Download Citation