• Advanced Photonics
  • Vol. 3, Issue 3, 034002 (2021)
Zhiping Hu1, Zhengzheng Liu2, Zijun Zhan1, Tongchao Shi2, Juan Du1、2、*, Xiaosheng Tang3、4、*, and Yuxin Leng1、2、*
Author Affiliations
  • 1University of Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, Hangzhou, China
  • 2Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
  • 3Chongqing University of Posts and Telecommunications, School of Optoelectronic Engineering, Chongqing, China
  • 4Zhengzhou University, School of Materials Science and Engineering, Zhengzhou, China
  • show less
    DOI: 10.1117/1.AP.3.3.034002 Cite this Article Set citation alerts
    Zhiping Hu, Zhengzheng Liu, Zijun Zhan, Tongchao Shi, Juan Du, Xiaosheng Tang, Yuxin Leng. Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission[J]. Advanced Photonics, 2021, 3(3): 034002 Copy Citation Text show less
    References

    [1] D. Weber. CH3NH3SnBrxI3x(x=03), a Sn(II)-system with cubic perovskite structure. Zeitschrift Fur Naturforsch. Sect. B, 33, 862-865(1978). https://doi.org/10.1515/znb-1978-0809

    [2] D. Weber. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Zeitschr. Naturforsch. Sect. B, 33, 1443-1445(1978). https://doi.org/10.1515/znb-1978-1214

    [3] D. Weber. The Perovskite system CH3NH3[PbnSn1nX3] (X = C1, Br, I). Zeitschr. Naturforsch. Sect. B, 34, 939-941(1979). https://doi.org/10.1515/znb-1979-0712

    [4] A. Kojima et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050-6051(2009).

    [5] S. D. Stranks, H. J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol., 10, 391-402(2015).

    [6] R. Gottesman, A. Zaban. Perovskites for photovoltaics in the spotlight: photoinduced physical changes and their implications. Acc. Chem. Res., 49, 320-329(2016).

    [7] Q. Lin et al. Organohalide perovskites for solar energy conversion. Acc. Chem. Res., 49, 545-553(2016).

    [8] N. G. Park et al. Towards stable and commercially available perovskite solar cells. Nat. Energy, 3, 16152(2016).

    [9] J. Seo et al. Rational strategies for efficient perovskite solar cells. Acc. Chem. Res., 49, 562-572(2016).

    [10] W. Zhang et al. Metal halide perovskites for energy applications. Nat. Energy, 3, 16048(2016).

    [11] P. Zhang et al. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater., 30, 1703737(2018).

    [12] A. K. Jena et al. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev., 119, 3036-3103(2019).

    [13] M. Jung et al. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev., 48, 2011-2038(2019).

    [14] M. Ahmadi et al. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater., 29, 1605242(2017).

    [15] F. P. G. de Arquer et al. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2, 16100(2017).

    [16] W. Wang et al. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev., 44, 5371-5408(2015).

    [17] K. Xiao et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy, 5, 870-880(2020). https://doi.org/10.1038/s41560-020-00705-5

    [18] X. H. Luo et al. Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers. Sci. China-Chem., 64, 218-227(2020).

    [19] R. Meitzner et al. Agrivoltaics-the perfect fit for the future of organic photovoltaics. Adv. Energy Mater., 11, 2002551(2020).

    [20] T. Moot et al. Choose your own adventure: fabrication of monolithic all-perovskite tandem photovoltaics. Adv. Mater., 32, 2003312(2020).

    [21] S. Kondo et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation. Phys. Rev. B, 70, 205322(2004). https://doi.org/10.1103/PhysRevB.70.205322

    [22] S. Kondo et al. Confinement-enhanced stimulated emission in microcrystalline CsPbCl3 films grown from the amorphous phase. J. Cryst. Growth, 282, 94-104(2005). https://doi.org/10.1016/j.jcrysgro.2005.04.088

    [23] G. C. Xing et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater., 13, 476-480(2014).

    [24] S. Kondo et al. High intensity photoluminescence of microcrystalline CsPbBr3 films: evidence for enhanced stimulated emission at room temperature. Curr. Appl. Phys., 7, 1-5(2007). https://doi.org/10.1016/j.cap.2005.08.001

    [25] F. Zhang et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 9, 4533-4542(2015). https://doi.org/10.1021/acsnano.5b01154

    [26] V. Adinolfi et al. The in-gap electronic state spectrum of methylammonium lead iodide single-crystal perovskites. Adv. Mater., 28, 3406-3410(2016).

    [27] W. Metaferia et al. Gallium arsenide solar cells grown at rates exceeding 300 μm  h1 by hydride vapor phase epitaxy. Nat. Commun., 10, 3361(2019). https://doi.org/10.1038/s41467-019-11341-3

    [28] X. P. Shen et al. Improved air-stability of an organic-inorganic perovskite with anhydrously transferred graphene. J. Mater. Chem. C, 6, 8663-8669(2018).

    [29] Y. Sun et al. Long-term stability of organic-inorganic hybrid perovskite solar cells with high efficiency under high humidity conditions. J. Mater. Chem. A, 5, 1374-1379(2017).

    [30] H. C. Yu et al. Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability. Nanoscale, 8, 19536-19540(2016).

    [31] N. Wang et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics, 10, 699-704(2016).

    [32] S. De Wolf et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett., 5, 1035-1039(2014).

    [33] D. Chen, X. Chen. Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. J. Mater. Chem. C, 7, 1413-1446(2019).

    [34] Y. Zhang et al. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep., 795, 1-51(2019).

    [35] H. Dong et al. Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev., 49, 951-982(2020).

    [36] J. Xu et al. Halide perovskites for nonlinear optics. Adv. Mater., 32, 1806736(2020).

    [37] Y. Bekenstein et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc., 137, 16008-16011(2015).

    [38] H. Huang et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater., 8, e328(2016).

    [39] X. M. Li et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater., 26, 2435-2445(2016). https://doi.org/10.1002/adfm.201600109

    [40] Z. X. Liu et al. Morphology-tailored halide perovskite platelets and wires: from synthesis, properties to optoelectronic devices. Adv. Opt. Mater., 6, 1800413(2018).

    [41] G. Nedelcu et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett., 15, 5635-5640(2015). https://doi.org/10.1021/acs.nanolett.5b02404

    [42] L. Protesescu et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 15, 3692-3696(2015). https://doi.org/10.1021/nl5048779

    [43] Y. X. Li et al. Advances in metal halide perovskite nanocrystals: synthetic strategies, growth mechanisms, and optoelectronic applications. Mater. Today, 32, 204-221(2020).

    [44] A. Fakharuddin et al. Inorganic and layered perovskites for optoelectronic devices. Adv. Mater., 31, 1807095(2019).

    [45] C. Li et al. Formability of ABX3 (X = F, CI, Br, I) halide perovskites. Acta Crystallogr. B, B64, 702-707(2008). https://doi.org/10.1107/S0108768108032734

    [46] Q. D. Sun, W. J. Yin. Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc., 139, 14905-14908(2017).

    [47] J. Shamsi et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc., 138, 7240-7243(2016). https://doi.org/10.1021/jacs.6b03166

    [48] J. Cho et al. Ligand-mediated modulation of layer thicknesses of perovskite methylammonium lead bromide nanoplatelets. Chem. Mat., 28, 6909-6916(2016).

    [49] J. Xing et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett., 15, 4571-4577(2015).

    [50] S. B. Sun et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 10, 3648-3657(2016).

    [51] D. D. Zhang et al. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc., 137, 9230-9233(2015).

    [52] J. K. Sun et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires. J. Am. Chem. Soc., 140, 11705-11715(2018). https://doi.org/10.1021/jacs.8b05949

    [53] D. D. Zhang et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc., 138, 7236-7239(2016).

    [54] F. Di Stasio et al. Reversible concentration-dependent photoluminescence quenching and change of emission color in CsPbBr3 nanowires and nanoplatelets. J. Phys. Chem. Lett., 8, 2725-2729(2017). https://doi.org/10.1021/acs.jpclett.7b01305

    [55] S. W. Eaton et al. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. U. S. A., 113, 1993-1998(2016).

    [56] M. Imran et al. Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chem. Mat., 28, 6450-6454(2016). https://doi.org/10.1021/acs.chemmater.6b03081

    [57] Y. Liu et al. Room temperature colloidal synthesis of CsPbBr3 nanowires with tunable length, width and composition. J. Mater. Chem. C, 6, 7797-7802(2018). https://doi.org/10.1039/C8TC02636J

    [58] D. Amgar et al. Tunable length and optical properties of CsPbX3 (X = Cl, Br, I) nanowires with a few unit cells. Nano Lett., 17, 1007-1013(2017). https://doi.org/10.1021/acs.nanolett.6b04381

    [59] Z. Yuan et al. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chem. Commun., 51, 16385-16388(2015).

    [60] V. K. Ravi et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J. Phys. Chem. Lett., 8, 4988-4994(2017). https://doi.org/10.1021/acs.jpclett.7b02192

    [61] J. A. Sichert et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett., 15, 6521-6527(2015).

    [62] J. Chen et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett., 17, 460-466(2017). https://doi.org/10.1021/acs.nanolett.6b04450

    [63] S. T. Ha et al. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater., 2, 838-844(2014).

    [64] Z. X. Liu et al. One-step vapor-phase synthesis and quantum-confined exciton in single-crystal platelets of hybrid halide perovskites. J. Phys. Chem. Lett., 10, 2363-2371(2019).

    [65] C. K. Lin et al. Two-step patterning of scalable all-inorganic halide perovskite arrays. ACS Nano, 14, 3500-3508(2020).

    [66] W. W. Chen et al. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application. J. Solid State Chem., 255, 115-120(2017). https://doi.org/10.1016/j.jssc.2017.06.006

    [67] X. Fang et al. Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands. AIP Adv., 7, 085217(2017). https://doi.org/10.1063/1.4994995

    [68] R. K. Singh et al. Structural, morphological and thermodynamic parameters investigation of tunable MAPb1xCdxBr32xI2x hybrid perovskite. J. Alloys Comp., 866, 158936(2021). https://doi.org/10.1016/j.jallcom.2021.158936

    [69] S. R. Smock et al. The surface chemistry and structure of colloidal lead halide perovskite nanocrystals. Acc. Chem. Res., 54, 707-718(2021).

    [70] Y. Xie et al. Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping. Adv. Sci., 7, 2001698(2020). https://doi.org/10.1002/advs.202001698

    [71] H. Deng et al. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 7, 4163-4170(2015).

    [72] D. D. Dong et al. Bandgap tunable Csx(CH3NH3)1xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices. Nanoscale, 9, 1567-1574(2017). https://doi.org/10.1039/C6NR06636D

    [73] P. C. Zhu et al. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett., 16, 871-876(2016).

    [74] J. He et al. In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix. Nanoscale, 10, 15436-15441(2018). https://doi.org/10.1039/C8NR04895A

    [75] H. Zhou et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano, 11, 1189-1195(2017).

    [76] T. Qiu et al. Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale, 10, 20963-20989(2018).

    [77] E. Z. Shi et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev., 47, 6046-6072(2018).

    [78] X. S. Tang et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater., 5, 1600788(2017). https://doi.org/10.1002/adom.201600788

    [79] Z.-J. Li et al. General strategy for the growth of CsPbX3 (X = Cl, Br, I) perovskite nanosheets from the assembly of nanorods. Chem. Mat., 30, 3854-3860(2018). https://doi.org/10.1021/acs.chemmater.8b01283

    [80] Q. Zhang et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett., 14, 5995-6001(2014).

    [81] X. Qin et al. Perovskite photodetectors based on CH3NH3PbI3 single crystals. Chem.-Asian J., 11, 2675-2679(2016). https://doi.org/10.1002/asia.201600430

    [82] A. Z. Pan et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano, 10, 7943-7954(2016). https://doi.org/10.1021/acsnano.6b03863

    [83] H. Huang et al. Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: a versatile approach for their shape-controlled synthesis. Angew. Chem.-Int. Ed., 58, 16558-16562(2019).

    [84] J. Liu et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano, 10, 3536-3542(2016). https://doi.org/10.1021/acsnano.5b07791

    [85] C. Huo et al. Field-effect transistors based on van-der-Waals-grown and dry-transferred all-inorganic perovskite ultrathin platelets. J. Phys. Chem. Lett., 8, 4785-4792(2017).

    [86] Z. Zheng et al. Space-confined synthesis of 2D all-inorganic CsPbI3 perovskite nanosheets for multiphoton-pumped lasing. Adv. Opt. Mater., 6, 1800879(2017). https://doi.org/10.1002/adom.201800879

    [87] N. F. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [88] X. J. Ni et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427-427(2012).

    [89] B. Wang et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett., 16, 5235-5240(2016).

    [90] Y. B. Fan et al. Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nat. Commun., 10, 2085(2019).

    [91] S. Sun et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 11, 4445-4452(2017). https://doi.org/10.1021/acsnano.7b00415

    [92] Y. S. Gao et al. Nonlinear holographic all-dielectric metasurfaces. Nano Lett., 18, 8054-8061(2018).

    [93] H. L. Wang et al. Nanoimprinted perovskite metasurface for enhanced photoluminescence. Opt. Express, 25, 1162-1171(2017).

    [94] B. Jeong et al. Polymer-assisted nanoimprinting for environment- and phase-stable perovskite nanopatterns. ACS Nano, 14, 1645-1655(2020).

    [95] K. Y. Wang et al. Micro- and nanostructured lead halide perovskites: from materials to integrations and devices. Adv. Mater., 33, 2000306(2021).

    [96] C. Zhang et al. Lead halide perovskite-based dynamic metasurfaces. Laser Photonics Rev., 13, 1900079(2019).

    [97] B. Gholipour et al. Organometallic perovskite metasurfaces. Adv. Mater., 29, 1604268(2017).

    [98] S. V. Makarov et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics, 4, 728-735(2017).

    [99] Z. P. Hu et al. Robust cesium lead halide perovskite microcubes for frequency upconversion lasing. Adv. Opt. Mater., 5, 1700419(2017).

    [100] B. Tang et al. Single-mode lasers based on cesium lead halide perovskite sub-micron spheres. ACS Nano, 11, 10681-10688(2017).

    [101] Z. Wei et al. Synthesis and encapsulation of all inorganic perovskite nanocrystals by microfluidics. J. Mater. Sci., 54, 6841-6852(2019).

    [102] Y. Mi et al. Fabry–Perot oscillation and room temperature lasing in perovskite cube-corner pyramid cavities. Small, 14, 1703136(2018).

    [103] L. Yang et al. Temperature-dependent lasing of CsPbI3 triangular pyramid. J. Phys. Chem. Lett., 10, 7056-7061(2019). https://doi.org/10.1021/acs.jpclett.9b02703

    [104] M. Chen et al. Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy, 53, 559-566(2018). https://doi.org/10.1016/j.nanoen.2018.09.020

    [105] F. Li et al. Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids. Sci. Bull., 64, 698-704(2019). https://doi.org/10.1016/j.scib.2019.04.016

    [106] J. L. Xu et al. Organized chromophoric assemblies for nonlinear optical materials: towards (sub)wavelength scale architectures. Small, 11, 1113-1129(2015).

    [107] A. Autere et al. Nonlinear optics with 2D layered materials. Adv. Mater., 30, 1705963(2018).

    [108] J. L. Xu et al. Self-assembled organic microfibers for nonlinear optics. Adv. Mater., 25, 2084-2089(2013).

    [109] J. B. Xiong et al. Wavelength dependent nonlinear optical response of tetraphenylethene aggregation-induced emission luminogens. Mat. Chem. Front., 2, 2263-2271(2018).

    [110] E. Garmire. Nonlinear optics in daily life. Opt. Express, 21, 30532-30544(2013).

    [111] B. B. Gu et al. Molecular nonlinear optics: recent advances and applications. Adv. Opt. Photonics, 8, 328-369(2016).

    [112] O. Tokel et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat. Photonics, 11, 639(2017).

    [113] S. H. Yue et al. Multimodal nonlinear optical microscopy. Laser Photonics Rev., 5, 496-512(2011).

    [114] M. Savoini et al. THz generation and detection by fluorenone based organic crystals. ACS Photonics, 5, 671-677(2018).

    [115] H. Linnenbank et al. Temperature dependent two-photon photoluminescence of CH3NH3PbBr3: structural phase and exciton to free carrier transition. Opt. Mater. Express, 8, 511-521(2018). https://doi.org/10.1364/OME.8.000511

    [116] Y. Wang et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett., 16, 448-453(2016).

    [117] G. Walters et al. Two-photon absorption in organometallic bromide perovskites. ACS Nano, 9, 9340-9346(2015).

    [118] B. S. Kalanoor et al. Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films. ACS Photonics, 3, 361-370(2016).

    [119] R. A. Ganeev et al. Strong nonlinear absorption in perovskite films. Opt. Mater. Express, 8, 1472-1483(2018).

    [120] J. Zhang et al. Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets. Opt. Lett., 42, 3371-3374(2017). https://doi.org/10.1364/OL.42.003371

    [121] K. N. Krishnakanth et al. Broadband femtosecond nonlinear optical properties of CsPbBr3 perovskite nanocrystals. Opt. Lett., 43, 603-606(2018). https://doi.org/10.1364/OL.43.000603

    [122] Q. Wei et al. Recent progress in metal halide perovskite micro- and nanolasers. Adv. Opt. Mater., 7, 1900080(2019).

    [123] F. Hide et al. Semiconducting polymers: a new class of solid-state laser materials. Science, 273, 1833-1836(1996).

    [124] B. R. Sutherland et al. Perovskite thin films via atomic layer deposition. Adv. Mater., 27, 53-58(2015).

    [125] Q. Liao et al. Tunable halide perovskites for miniaturized solid-state laser applications. Adv. Opt. Mater., 7, 1900099(2019).

    [126] Q. Zhang et al. Advances in small perovskite-based lasers. Small Methods, 3, 1700163(2017).

    [127] S. Yakunin et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun., 6, 8056(2015).

    [128] B. R. Sutherland et al. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano, 8, 10947-10952(2014).

    [129] Z. Liu et al. Robust subwavelength single-mode perovskite nanocuboid laser. ACS Nano, 12, 5923-5931(2018).

    [130] C. Zhao et al. Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals. J. Phys. Chem. Lett., 10, 2357-2362(2019). https://doi.org/10.1021/acs.jpclett.9b00734

    [131] X. M. Li et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater., 29, 1701185(2017).

    [132] Z. Z. Liu et al. Two-photon pumped amplified spontaneous emission and lasing from formamidinium lead bromine nanocrystals. ACS Photonics, 6, 3150-3158(2019).

    [133] Y. Wang et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater., 27, 1605088(2017).

    [134] C. Y. Huang et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics, 4, 2281-2289(2017). https://doi.org/10.1021/acsphotonics.7b00520

    [135] S. Chen, A. Nurmikko. Stable green perovskite vertical-cavity surface-emitting lasers on rigid and flexible substrates. ACS Photonics, 4, 2486-2494(2017).

    [136] J. Yang et al. High efficiency up-conversion random lasing from formamidinium lead bromide/amino-mediated silica spheres composites. Adv. Opt. Mater., 8, 2000290(2020).

    [137] Z. Liu et al. Stable and enhanced frequency up-converted lasing from CsPbBr3 quantum dots embedded in silica sphere. Opt. Express, 27, 9459-9466(2019). https://doi.org/10.1364/OE.27.009459

    [138] Y. Wang et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater., 27, 7101-7108(2015).

    [139] Y. Q. Xu et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc., 138, 3761-3768(2016).

    [140] X. Li et al. Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films. Nano Energy, 68, 104334(2020).

    [141] Z. Liu et al. Advances in inorganic and hybrid perovskites for miniaturized lasers. Nanophotonics, 9, 2251-2272(2020).

    [142] A. S. Polushkin et al. Single-particle perovskite lasers: from material properties to cavity design. Nanophotonics, 9, 599-610(2020).

    [143] Z. Liu et al. Research progress of low-dimensional metal halide perovskites for lasing applications. Chin. Phys. B, 27, 114209(2018).

    [144] H. M. Zhu et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater., 14, 636-642(2015).

    [145] Y. P. Fu et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 10, 7963-7972(2016). https://doi.org/10.1021/acsnano.6b03916

    [146] B. Tang et al. Energy transfer and wavelength tunable lasing of single perovskite alloy nanowire. Nano Energy, 71, 104641(2020).

    [147] X. Wang et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Res., 10, 3385-3395(2017).

    [148] G. Li et al. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite. Adv. Funct. Mater., 29, 1805553(2019).

    [149] Q. Zhang et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater., 26, 6238-6245(2016).

    [150] Q. Liao et al. Perovskite microdisk microlasers self-assembled from solution. Adv. Mater., 27, 3405-3410(2015).

    [151] X. F. Liu et al. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci., 3, 1600137(2016).

    [152] Q. Wei et al. Two-photon optical properties in individual organic-inorganic perovskite microplates. Adv. Opt. Mater., 5, 1700809(2017).

    [153] Z. Z. Liu et al. Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates. Photon. Res., 8, A31-A38(2020). https://doi.org/10.1364/PRJ.399960

    [154] B. Tang et al. Ultrahigh quality upconverted single-mode lasing in cesium lead bromide spherical microcavity. Adv. Opt. Mater., 6, 1800391(2018).

    [155] B. Zhou et al. Linearly polarized lasing based on coupled perovskite microspheres. Nanoscale, 12, 5805-5811(2020).

    [156] K. Y. Wang et al. High-density and uniform lead halide perovskite nanolaser array on silicon. J. Phys. Chem. Lett., 7, 2549-2555(2016).

    [157] P. Liu et al. Organic–inorganic hybrid perovskite nanowire laser arrays. ACS Nano, 11, 5766-5773(2017).

    [158] J. Feng et al. ‘Liquid knife’ to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater., 28, 3732-3741(2016).

    [159] C. H. Lin et al. Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater., 6, 1800474(2018).

    [160] K. Wang et al. Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv. Mater., 32, 2001999(2020).

    [161] C. Huang et al. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [162] C. Li et al. Surface-plasmon-assisted metal halide perovskite small lasers. Adv. Opt. Mater., 7, 1900279(2019).

    [163] T. S. Kao et al. Localized surface plasmon for enhanced lasing performance in solution-processed perovskites. Opt. Express, 24, 20696-20702(2016).

    [164] Y.-J. Lu et al. Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold. ACS Photonics, 8, 335-342(2020).

    [165] Y. H. Hsieh et al. Perovskite quantum dot lasing in a gap-plasmon nanocavity with ultralow threshold. ACS Nano, 14, 11670-11676(2020).

    [166] S. Li et al. Optically-controlled quantum size effect in a hybrid nanocavity composed of a perovskite nanoparticle and a thin gold film. Laser Photonics Rev., 15, 2000480(2021).

    [167] W. Du et al. Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics, 5, 2051-2059(2018). https://doi.org/10.1021/acsphotonics.7b01593

    [168] Q. Shang et al. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett., 20, 6636-6643(2020). https://doi.org/10.1021/acs.nanolett.0c02462

    [169] S. Zhang et al. Trapped exciton–polariton condensate by spatial confinement in a perovskite microcavity. ACS Photonics, 7, 327-337(2020).

    [170] M. Li et al. Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites. Adv. Funct. Mater., 28, 1707006(2018).

    [171] C. Qin et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 585, 53-57(2020).

    [172] S. Wang et al. Maskless fabrication of aluminum nanoparticles for plasmonic enhancement of lead halide perovskite lasers. Adv. Opt. Mater., 5, 1700529(2017).

    [173] X. Wu et al. Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods. Nanoscale, 11, 1959-1967(2019).

    [174] J. Yang et al. Enhanced single-mode lasers of all-inorganic perovskite nanocube by localized surface plasmonic effect from Au nanoparticles. J. Luminesc., 208, 402-407(2019).

    [175] S. Zhang et al. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires. Adv. Opt. Mater., 6, 1701032(2018).

    [176] Q. Shang et al. Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton. Nano Lett., 20, 1023-1032(2020). https://doi.org/10.1021/acs.nanolett.9b04175

    [177] Q. Shang et al. Surface plasmon enhanced strong exciton-photon coupling in hybrid inorganic-organic perovskite nanowires. Nano Lett., 18, 3335-3343(2018).

    [178] R. Su et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 17, 3982-3988(2017).

    [179] A. Fieramosca et al. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photonics, 5, 4179-4185(2018).

    [180] A. Fieramosca et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv., 5, eaav9967(2019).

    [181] X. Zhang et al. Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet. ACS Appl. Mater. Interfaces, 12, 5081-5089(2020).

    [182] Y. Liang et al. Lasing from mechanically exfoliated 2D homologous Ruddlesden–Popper perovskite engineered by inorganic layer thickness. Adv. Mater., 31, 1903030(2019).

    [183] Z. Liu et al. Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser. ACS Nano, 15, 6900-6908(2021).

    [184] C. Qin et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photonics, 14, 70-75(2020).

    [185] G. C. Xing et al. Solution-processed tin-based perovskite for near-infrared lasing. Adv. Mater., 28, 8191-8196(2016).

    [186] Z. Y. Wu et al. Room-temperature near-infrared random lasing with tin-based perovskites prepared by CVD processing. J. Phys. Chem. C, 125, 5180-5184(2021).

    CLP Journals

    [1] Wei Wang, Qinpeng Chen, Yifei Zhao, Yakun Le, Shengda Ye, Mang Wan, Xiongjian Huang, Guoping Dong. PbS quantum dots and BaF2:Tm3+ nanocrystals co-doped glass for ultra-broadband near-infrared emission [Invited][J]. Chinese Optics Letters, 2022, 20(2): 021603

    [2] Qian Xiong, Sihao Huang, Zijun Zhan, Juan Du, Xiaosheng Tang, Zhiping Hu, Zhengzheng Liu, Zeyu Zhang, Weiwei Chen, Yuxin Leng. Surface ligand modified cesium lead bromide/silica sphere composites for low-threshold upconversion lasing[J]. Photonics Research, 2022, 10(3): 628

    Zhiping Hu, Zhengzheng Liu, Zijun Zhan, Tongchao Shi, Juan Du, Xiaosheng Tang, Yuxin Leng. Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission[J]. Advanced Photonics, 2021, 3(3): 034002
    Download Citation