• Infrared and Laser Engineering
  • Vol. 52, Issue 9, 20220814 (2023)
Yi Yang1, Lirong Fan1, Xiaobo Wang2, Fengtao He1, Zuoliang Duan1, and Zhanwang Min1
Author Affiliations
  • 1School of Electronic Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
  • 2Xi'an Institute of Precision Machinery, Xi'an 710077, China
  • show less
    DOI: 10.3788/IRLA20220814 Cite this Article
    Yi Yang, Lirong Fan, Xiaobo Wang, Fengtao He, Zuoliang Duan, Zhanwang Min. Research on wavelength conversion system performance of high-power wireless optical communication[J]. Infrared and Laser Engineering, 2023, 52(9): 20220814 Copy Citation Text show less
    References

    [1] D Pompili, I F Akyildiz. Overview of networking protocols for underwater wireless communications. IEEE Communications Magazine, 47, 97-102(2009).

    [2] Yi Yang, Yan Liu, Yilong Wang, . Influence of underwater composite channel on performance of GMSK wireless optical communication system. Infrared and Laser Engineering, 51, 20210622(2022).

    [3] Xiangzi Chen, Rong Weng, Hongmei Pei. Attenuation characteristics of laser in seawater with different temperature and salinity. Journal of Hainan Tropical Ocean University, 26, 93-100(2019).

    [4] Y Koizumi, K Toyoda, M Yoshida, et al. 1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km. Optics Express, 20, 12508-12514(2012).

    [5] A Al-halafi, B Shihada. UHD video transmission over bidirectional underwater wireless optical communication. IEEE Photonics Journal, 10, 1-14(2018).

    [6] Y Chen, M Kong, T Ali, et al. 26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode. Optics Express, 25, 14760-14765(2017).

    [7] J Xu, Y Song, X Yu, et al. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser. Optics Express, 24, 8097-8109(2016).

    [8] M A Khalighi, M Uysal. Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials, 16, 2231-2258(2014).

    [9] Lai J Y, Hsu C S, Hsu C W, et al. Single pass 7 watts continuous wave 532 nm generation by focusing optimized second harmonic generation in MgO: PPLN[C]Nonlinear Frequency Generation Conversion: Materials Devices XVIII, 2019, 10902: 1090205.

    [10] S A Berry, L G Carpenter, A C Gray, et al. Zn-indiffused diced ridge waveguides in MgO: PPLN generating 1 watt 780 nm SHG at 70% efficiency. OSA Continuum, 2, 3456-3464(2019).

    [11] L G Carpenter, S A Berry, A C Gray, et al. CW demonstration of SHG spectral narrowing in a PPLN waveguide generating 2.5 W at 780 nm. Optics Express, 28, 21382-21390(2020).

    [12] F Hanson, S Radic. High bandwidth underwater optical communication. Applied Optics, 47, 277-283(2008).

    [13] Yang Y, Fan L, He F, et al. Longdistance underwater optical wireless communication with PPLN wavelength conversion[C]24th National Laser Conference & Fifteenth National Conference on Laser Technology Optoelectronics, 2020, 11717: 117172J.

    [14] Mei Sang, Ting Xue, Jian Yu, . Temperature dependence of the second harmonic generation in periodically poled LiNbO3crystal. Journal of Optoelectronics · Laser, 13, 343-348(2002).

    [15] M Yamada, N Nada, M Saitoh, et al. First order quasi phase matched LiNbO3waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation. Applied Physics Letters, 62, 435-436(1993).

    [16] O Gayer, Z Sacks, E Galun, et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Applied Physics B, 91, 343-348(2008).

    Yi Yang, Lirong Fan, Xiaobo Wang, Fengtao He, Zuoliang Duan, Zhanwang Min. Research on wavelength conversion system performance of high-power wireless optical communication[J]. Infrared and Laser Engineering, 2023, 52(9): 20220814
    Download Citation