• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 5, 1730010 (2017)
Yifan Yang1, Lingchao Chen2, and Minbiao Ji1、*
Author Affiliations
  • 1State Key Laboratory of Surface Physics and Department of Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, P. R. China
  • 2Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
  • show less
    DOI: 10.1142/s1793545817300105 Cite this Article
    Yifan Yang, Lingchao Chen, Minbiao Ji. Stimulated Raman scattering microscopy for rapid brain tumor histology[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1730010 Copy Citation Text show less
    References

    [1] G. Husmann, P. Kaatsch, A. Katalinic, J. Bertz, J. Haberland et al., “Krebs in Deutschland 2005/2006,” Robert Koch-Institut und die Gesellschaft der epidemiologischen Kreberegister in Deutschland e.V., (2010).

    [2] P. Kremer, F. Mahmoudreza, R. Ding, M. Pritsch, S. Zoubaa et al., “Intraoperative fluorescence staining of malignant brain tumors using 5-aminofluorescein-labeled albumin,” Neurosurgery 64, S53-S61 (2009).

    [3] K. Petrecca, M. C. Guiot, V. Panet-Raymond, L. Souhami “Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma,” J. Neurooncol. 111, 19-23 (2013).

    [4] N. Sanai, M. Y. Polley, M. W. McDermott, A. T. Parsa and M. S. Berger, “An extent of resection threshold for newly diagnosed glioblastomas,” J. Neurosurg. 115, 3-8 (2011).

    [5] W. Stummer, J. C. Tonn, H. M. Mehdorn, U. Nestler, K. Franz et al., “Counterbalancing risks and gains from extended resections in malignant glioma surgery: A supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study Clinical article,” J. Neurosurg. 114, 613-623 (2011).

    [6] I. F. Talos, K. H. Zou, L. Ohno-Machado, J. G. Bhagwat, R. Kikinis et al., “Supratentorial low-grade glioma resectability: Statistical predictive analysis based on anatomic MR features and tumor characteristics,” Radiology 239, 506-513 (2006).

    [7] L. Eisenhardt and H. Cushing, “Diagnosis of intracranial tumors by supravital technique,” Am. J. Pathol. 6, 541-U531 (1930).

    [8] D. D. Langleben and G. M. Segall, “PET in differentiation of recurrent brain tumor from radiation injury,” J. Nucl. Med. 41, 1861-1867 (2000).

    [9] M. C. Preul, R. Leblanc, Z. Caramanos, R. Kasrai, S. Narayanan et al., “Magnetic resonance spectroscopy guided brain tumor resection: Differentiation between recurrent glioma and radiation change in two diagnostically difficult cases,” Can. J. Neurol. Sci. 25, 13-22 (1998).

    [10] W. Chen, “Clinical applications of PET in brain tumors,” J. Nucl. Med. 48, 1468-1481 (2007).

    [11] Y. L. Ge, M. Law and R. I. Grossman, Applications of diffusion tensor MR imaging in multiple sclerosis, White Matter in Cognitive Neuroscience: Advances in Diffusion Tensor Imaging and Its Applications, J. L. UlmerL. ParsonsM. MoseleyJ. Gabrieli, Eds., p. 202, New York, Acad Sciences, New York (2005).

    [12] M. H. T. Reinges, H. H. Nguyen, T. Krings, B. O. Hutter, V. Rohde et al., “Course of brain shift during microsurgical resection of supratentorial cerebral lesions: Limits of conventional neuronavigation,” Acta Neurochir. 146, 369-377 (2004).

    [13] M. Makary, E. A. Chiocca, N. Erminy, M. Antor, S. D. Bergese et al., “Clinical and economic outcomes of low-field intraoperative MRI-guided tumor resection neurosurgery,” J. Mag. Reson. Imaging 34, 1022-1030 (2011).

    [14] C. Ewelt, F. W. Floeth, J. Felsberg, H. J. Steiger, M. Sabel et al., “Finding the anaplastic focus in diffuse gliomas: The value of Gd-DTPA MRI. enhanced, FET-PET, and intraoperative, ALA-derived tissue fluorescence,” Clin. Neurol. Neurosurg. 113, 541-547 (2011).

    [15] J. Regelsberger, F. Lohmann, K. Helmke and M. Westphal, “Ultrasound-guided surgery of deep seated brain lesions,” Eur. J. Ultrasound 12, 115-121 (2000).

    [16] H. Bohringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Huttmann et al., “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. 151, 507-517 (2009).

    [17] N. Sanai, J. Eschbacher, G. Hattendorf, S. W. Coons, M. C. Preul et al., “Intraoperative confocal microscopy for brain tumors: A feasibility analysis in humans,” Neurosurgery 68, 282-290 (2011).

    [18] W. Stummer, J. C. Tonn, C. Goetz, W. Ullrich, H. Stepp et al., “5-aminolevulinic acid-derived tumor fluorescence: The diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging,” Neurosurgery 74, 310-319 (2014).

    [19] D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman et al., “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081-7086 (2003).

    [20] S. Witte, A. Negrean, J. C. Lodder, C. P. J. de Kock, G. Testa Silva et al., “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 108, 5970-5975 (2011).

    [21] Z. Movasaghi, S. Rehman and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42, 493-541 (2007).

    [22] R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66, 1091-1120 (2012).

    [23] T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov et al., “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16, 021113 (2011).

    [24] C. Krafft, L. Shapoval, S. B. Sobottka, G. Schackert and R. Salzer, “Identification of primary tumors of brain metastases by infrared spectroscopic imaging and linear discriminant analysis,” Technol. Cancer Res. Treat. 5, 291-298 (2006).

    [25] C. Krafft, S. B. Sobottka, K. D. Geiger, G. Schackert and R. Salzer, “Classification of malignant gliomas by infrared spectroscopic imaging and linear discriminant analysis,” Anal. Bioanal. Chem. 387, 1669-1677 (2007).

    [26] T. M. Greve, K. B. Andersen and O. F. Nielsen, “ATR-FTIR, FT-NIR and near-FT-Raman spectroscopic studies of molecular composition in human skin in vivo and pig ear skin in vitro,” Spectroscopy 22, 437-457 (2008).

    [27] S. N. Kalkanis, R. E. Kast, M. L. Rosenblum, T. Mikkelsen, S. M. Yurgelevic et al., “Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections,” J. Neurooncol. 116, 477-485 (2014).

    [28] A. Mizuno, H. Kitajima, K. Kawauchi, S. Muraishi and Y. Ozaki, “Near-infrared Fourier-transform Raman-spectroscopic study of human brain-tissues and tumors,” J. Raman Spectrosc. 25, 25-29 (1994).

    [29] M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette et al., “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7, 274ra19 (2015).

    [30] H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter et al., “Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner,” ACS Nano 8, 9755-9766 (2014).

    [31] C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin et al., “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).

    [32] B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom et al., “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368-1370 (2010).

    [33] A. Zumbusch, G. R. Holtom and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).

    [34] J. X. Cheng, A. Volkmer and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363-1375 (2002).

    [35] J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827-840 (2004).

    [36] E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. Inst. Radio Eng. 50, 2367 (1962).

    [37] A. Owyoung and E. D. Jones, “Stimulated Raman spectroscopy using low-power cw lasers,” Opt. Lett. 1, 152-154 (1977).

    [38] E. Ploetz, S. Laimgruber, S. Berner, W. Zinth and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007).

    [39] C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom et al., “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857-1861 (2008).

    [40] D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik et al., “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134, 3623-3626 (2012).

    [41] D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle et al., “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nat. Biomed. Eng. 1, 0027 (2017).

    [42] M. B. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. H. Liu et al., “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).

    [43] M. B. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl et al., “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).

    [44] C. W. Freudiger, R. Pfannl, D. A. Orringer, B. G. Saar, M. B. Ji et al., “Multicolored stain-free histopathology with coherent Raman imaging,” Lab. Invest. 92, 1661-1661 (2012).

    [45] F. K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji et al., “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624-11629 (2015).

    [46] D. Fu, G. Holtom, C. Freudiger, X. Zhang and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634-4640 (2013).

    [47] R. He, Z. Liu, Y. Xu, W. Huang, H. Ma et al., “Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line,” Opt. Lett. 42, 659-662 (2017).

    [48] A. Francis, K. Berry, Y. Chen, B. Figueroa and D. Fu, “Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy,” PLoS One 12, e0178750 (2017).

    [49] F.-K. Lu, M. Ji, D. Fu, X. Ni, C. W. Freudiger et al., “Multicolor stimulated Raman scattering microscopy,” Mol. Phys. 110, 1927-1932 (2012).

    [50] C. S. Liao, M. N. Slipchenko, P. Wang, J. Li, S. Y. Lee et al., “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

    [51] D. Fu, “Quantitative chemical imaging with stimulated Raman scattering microscopy,” Curr. Opin. Chem. Biol. 39, 24-31 (2017).

    [52] C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie et al., “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153-159 (2014).

    [53] L. Zhang, S. Shen, Z. Liu and M. Ji, “Label-free, quantitative imaging of MoS2-nanosheets in live cells with simultaneous stimulated Raman scattering and transient absorption microscopy,” Adv. Biosyst. 1, 1700013-1700020 (2017).

    [54] Y. Xu, Q. Liu, R. He, X. Miao and M. Ji, “Imaging laser-triggered drug release from gold nanocages with transient absorption lifetime microscopy,” ACS Appl. Mater. Interfaces 9, 19653-19661 (2017).

    [55] C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong et al., “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076-12087 (2007).

    [56] F. K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang et al., “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451-3462 (2016).

    [57] R. He, Y. Xu, L. Zhang, S. Ma, X. Wang et al., “Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging,” Optica 4, 44-47 (2017).

    Yifan Yang, Lingchao Chen, Minbiao Ji. Stimulated Raman scattering microscopy for rapid brain tumor histology[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1730010
    Download Citation