• Acta Optica Sinica
  • Vol. 40, Issue 14, 1412002 (2020)
Fangbin Wang1、2、4、*, Fan Sun1、2, Darong Zhu1、2、4, Tao Liu1、2、4, Xue Wang1、2, and Feng Wang3
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 2Key Laboratory of Construction Machinery Fault Diagnosis and Early Warning Technology, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 3Key Laboratory of Polarization Imaging Detection Technology in Anhui Province, Hefei, Anhui 230031, China
  • 4Anhui Education Department Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei, Anhui 230601, China
  • show less
    DOI: 10.3788/AOS202040.1412002 Cite this Article Set citation alerts
    Fangbin Wang, Fan Sun, Darong Zhu, Tao Liu, Xue Wang, Feng Wang. Metal Fatigue Damage Assessment Based on Polarized Thermography[J]. Acta Optica Sinica, 2020, 40(14): 1412002 Copy Citation Text show less
    References

    [1] Zhou Z G, Liu S M. Nondestructive evaluation of early stage plasticity and fatigue damage of aluminum alloy using nonlinear ultrasonic method[J]. Journal of Mechanical Engineering, 47, 41-46, 53(2011).

    [2] Kaleta J, Blotny R, Harig H. Energy stored in a specimen under fatigue limit loading conditions[J]. Journal of Testing and Evaluation, 19, 326-333(1990).

    [3] Fan J L. High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J]. Chinese Journal of Mechanical, 54, 1-8(2018).

    [4] Zhu D R, Xu D J, Liu T et al. Thermodynamic entropy characteristics analysis and life prediction model of metal low cycle fatigue processes[J]. China Mechanical Engineering, 30, 1904-1910(2019).

    [5] Wang X G, Ran H R, Jiang C et al. An energy dissipation-based fatigue crack growth model[J]. International Journal of Fatigue, 114, 167-176(2018).

    [6] de Finis R, Palumbo D, Ancona F et al. Fatigue limit evaluation of various martensitic stainless steels with new robust thermographic data analysis[J]. International Journal of Fatigue, 74, 88-96(2015).

    [7] Zhang Y L, Zhang H C, Zhao J X et al. Review of non-destructive testing for remanufacturing of high-end equipment[J]. Journal of Mechanical Engineering, 49, 80-90(2013).

    [8] Liu T, Lü S P, Wang F B et al. Feature extraction and entropy analysis of metal surface thermography in low cycle fatigue process[J]. Ordnance Material Science and Engineering, 41, 23-29(2018).

    [9] Liu Y X, Zhang J, Du Y C. Infrared imaging temperature measurement for a shielded surface by diffuse medium[J]. Laser & Optoelectronics Progress, 53, 091201(2016).

    [10] Xie J, Yang X Y, Xu C H et al. Infrared thermal images detecting surface defect of steel specimen based on morphological algorithm[J]. Journal of China University of Petroleum (Edition of Natural Science), 36, 146-150(2012).

    [11] Xie J, Xu C H, Chen G M. An infrared thermo image processing framework based on MRF model to detect surface defect on a metal element[J]. Oil Field Equipment, 41, 20-23(2012).

    [12] Fan J L, Guo X L, Wu C W. A new application of the infrared thermography for fatigue evaluation and damage assessment[J]. International Journal of Fatigue, 44, 1-7(2012).

    [13] Hwang S, An Y K, Kim J M et al. Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography[J]. Optics and Lasers in Engineering, 119, 9-17(2019).

    [14] Yang R Z, He Y Z, Gao B et al. Inductive pulsed phase thermography for reducing or enlarging the effect of surface emissivity variation[J]. Applied Physics Letters, 105, 184103(2014).

    [15] Bai L B, Tian S L, Cheng Y H et al. Reducing the effect of surface emissivity variation in eddy current pulsed thermography[J]. IEEE Sensors Journal, 14, 1137-1142(2014).

    [16] Niu J Y, Li F M, Ma L X. The theoretical analysis of thermal infrared emission polarization and experimental verification[J]. Opto-Electronic Engineering, 41, 88-93(2014).

    [17] Zhang Z, Liu X Y, Wang J L et al. Division-of-time long-wave infrared high frame frequency polarization imaging experiment[J]. Chinese Journal of Liquid Crystals and Displays, 34, 508-514(2019).

    [18] Zhao Y Q, Ma W M, Li L L[J]. Progress of infrared polarimetric imaging detection Flight Control & Detection, 2019, 77-84.

    [19] Ma S, Bai T Z, Cao F M et al. Infrared polarimetric scene simulation based on bidirectional reflectance distribution function model[J]. Acta Optica Sinica, 29, 3357-3361(2009).

    [20] Wang Q, Liang J Q, Liang Z Z et al. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Journal of Optics, 11, 92-99(2018).

    [21] Chen W L, Wu J L, Xu W B et al. Quantitative analysis based on infrared polarization characteristic of black body[J]. Journal of Infrared and Millimeter Waves, 36, 767-775(2017).

    [22] Chen W L, Wang S H, Jin W Q et al. Research of infrared polarization characteristics based on polarization micro-surface theory[J]. Journal of Infrared and Millimeter Waves, 33, 507-514(2014).

    [23] Wang Z. Model of polarized thermal emission from rough metal surface[J]. Acta Optica Sinica, 29, 707-711(2009).

    [24] Wang Z, Hong J, Ye S et al. Study on effect of metal surface roughness on polarized thermal emission[J]. Acta Photonica Sinica, 36, 1500-1503(2007).

    [25] Wang Z, Qiao Y L, Hong J et al. Thermal emission polarization of metal plate at different viewing angles[J]. Opto-Electronic Engineering, 34, 49-52(2007).

    [26] Fan J L, Guo X L, Wu C W. Fatigue characterisation based on quantitative infrared thermography[J]. Mechanics and Engineering, 34, 7-17(2012).

    [27] Mortezavi V, Haghshenas A, Khonsari M M et al. Fatigue analysis of metals using damping parameter[J]. International Journal of Fatigue, 91, 124-135(2016).

    [28] Nowick A S, Berry B S[M]. An elastic relaxation in crystalline solids(1972).

    [29] Haghshenas A, Khonsari M M. Damage accumulation and crack initiation detection based on the evolution of surface roughness parameters[J]. International Journal of Fatigue, 107, 130-144(2018).

    [30] Man J, Obrtlík K, Polák J. Extrusions and intrusions in fatigued metals. Part 1. State of the art and history[J]. Philosophical Magazine, 89, 1295-1336(2009).

    [31] Zhang D S, Yu Y, Chen L. Study of the emissivity feature on the rough surface[J]. Transactions of Shenyang Ligong University, 25, 74-76(2006).

    Fangbin Wang, Fan Sun, Darong Zhu, Tao Liu, Xue Wang, Feng Wang. Metal Fatigue Damage Assessment Based on Polarized Thermography[J]. Acta Optica Sinica, 2020, 40(14): 1412002
    Download Citation