• Journal of Innovative Optical Health Sciences
  • Vol. 8, Issue 4, 1550030 (2015)
Artur I. Kuznetsov1、*, Aleksander Frorip1, Jekaterina Kozlova2, Vitali Nagirnyi2, Mai Ots-Rosenberg3, Ivo Romet2, and Alar Sünter4
Author Affiliations
  • 1Tartu Science Park, AS Ldiamon Riia str. 185, 51 014 Tartu, Estonia
  • 2Institute of Physics, Tartu University Ravila str. 14c, Tartu 50411, Estonia
  • 3Department of Internal Medicine, Tartu University Puusepa str. 8, Tartu 51014, Estonia
  • 4Biomedicum, Tartu University Ravila str. 19, 50411 Tartu, Estonia
  • show less
    DOI: 10.1142/s1793545815500303 Cite this Article
    Artur I. Kuznetsov, Aleksander Frorip, Jekaterina Kozlova, Vitali Nagirnyi, Mai Ots-Rosenberg, Ivo Romet, Alar Sünter. Visible fluorescence of biological fluids as a renal failure marker: New integrative approach[J]. Journal of Innovative Optical Health Sciences, 2015, 8(4): 1550030 Copy Citation Text show less
    References

    [1] H. A. Schwertner, "Isolation and chromatographic analysis of unidentified fluorescence in biological fluids of patients with chronic renal disease," Nephron 31, 209–211 (1982).

    [2] G. Münch, R. Keis, A. Wessels, P. Riederer, U. Bahner, A. Heidland, T. Niwa, H.-D. Lemke and R. Schinzel, "Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA," Eur. J. Clin. Chem. Clin. Biochem. 35, 669–677 (1997).

    [3] A. Kuznetsov, A. Frorip, M. Ots-Rosenberg, A. Sünter, "Blue and UV fluorescence of biological fluids and carbon nanodots," Proc. of SPIE. 9032, 90320C1–90320C11 (2013).

    [4] A. Kuznetsov, A. Frorip, A. Maiste, M. Ots- Rosenberg, A. Sünter, "Visible auto-fluorescence in biological fluids as biomarker of pathological processes and new monitoring tool," J. Innov. Opt. Health Sci. 8(3), 1541003-1-1541003-9 (2014), doi: 10.1142/S179354581541003

    [5] 5. P. J. Tornalley, "Advanced glycation end products in renal failure," J. Renal Nutr. 16, 178–184 (2006).

    [6] A. Kuznetsov, A. Frorip, A. Maiste, M. Ots- Rosenberg, A. Sünter, J. Sablonin, J. Vasil'chenko, "Advanced glycation end products in hemodialysates as fluorescent and optical absorption markers of patients mortality," Proc. SPIE 9421, Eighth Int. Conf. Advanced Optical Materials and Devices, 94210L, doi: 10.1117/12.2083585.

    [7] D. Fuentealba, B. Friguel, E. Silva, "Advanced glycation endproducts induce photocrosslinking and oxidation of bovine lens proteins through type-I mechanism," Photochem. Photobiol. 85, 185–194 (2009).

    [8] K. Yanagisawa, Z. Makita, K. Shiroshita, T. Ueda, T. Fusegawa, S. Kuwajima, M. Takeuchi, T. Koike, "Specific fluorescence assay for advanced glycation end products in blood and urine of diabetic patients," Metabolism 47, 1348–1353 (1998).

    [9] P. Papanastasiou, L. Gras, H. Rodela, A. Patrikarea, D. Oreopulos, E. P. Diamandis, "Immunological guantification of advanced glycosylation end-products in the serum of patients on hemodialysis or CAPD," Kidney Int. 46, 216–222 (1994).

    [10] R. Dolhofer-Bliesener, B. Lechner, R. Deppisch, E. Ritz, K. D. Gerbitz, "Immunological determination of advanced glycosylation end-products in human blood and urine," Nephrol. Dial. Transplant. 10, 657–664 (1995).

    [11] M. A. Friedlander, Y. C. Wu, A. Elgawish, V. M. Monnier, "Early and advanced glycosylation end products," J. Clin. Invest. 97, 728–735 (1996).

    [12] M. Takeuchi, Z. Makita, K. Yanagisawa, Y. Kameda, T. Koike, "Detection of Noncarboxymethyllysine and Carboxymethyllysine advanced glycation end products (AGE) in serum of diabetic patients," Mol. Med. 5, 393–405 (1999).

    [13] www.hmdb.ca.

    [14] A. Kuznetsov, A. Frorip, M. Ots-Rosenberg, A. Sünter, S. Patsaeva, "Endogenous carbon nanoparticles as source of blue autofluorescence in biological fluids: Eventual use in clinical praxis," Saratov Fall Meeting 2013, Biophotonics, Internet Invited Lecture, 25–28 September 2013, Available at http://sfm.eventry.org/report/911.

    [15] A. C. Raff, T. W. Meyer, T. H. Hostetter, "New insights into uremic toxicity," Curr. Opin. Nephrol. Hypertens. 17, 560–565 (2008).

    [16] M. E. Elsharif, "Mortality rate of patients with end stage renal disease on regular hemodialysis: A single center study," Saudi J. Kidney Dis. Transpl. 22, 594–596 (2011).

    [17] S. B. Schwedler, Th. Metzger, R. Schinzel, Ch. Wanner, "Advanced glycation end products and mortality in hemodialysis patients," Kidney Int. 62, 301–310 (2002).

    [18] W. F. Owen, Jr., N. L. Lew, Y. Liu, E. G. Lowrie, J. M. Lasarus, "The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis," New Engl. J. Med. 329, 1001–1006 (1993).

    [19] J. Holmar, I. Fridolin, F. Uhlin, A. Fernstr€om, M. Luman, "Estimation of dialysis patients' survival through combined approach of small molecule uremic markers," Proc. Estonian Acad. Sci. 63, 315– 321 (2014).

    [20] A. Dawnay, "Renal clearance of glycation adducts: Anti-glycation defence in uraemia and dialysis," Biochem. Soc. Trans. 31, 1386–1389 (2003).

    [21] L. Ratke, P. W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing, Springer Verlag, Berlin-Heidelberg, New York (2002).

    [22] H. Li, Z. Kang, Y. Liu and S.-T. Lee, Carbon nanodots: Synthesis, properties and applications," J. Mater. Chem. 12, 24230–24253 (2012).

    [23] D. Pan, J. Zhang, Z. Li, M. Wu, "Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots," Adv. Mater. 22, 734–738 (2010).

    [24] J. Shang, L. Ma, J. Li, W. Ai, T. Yu, G. G. Gurzadyan, "The origin of fluorescence from graphene oxide," Sci. Rep. 2 (2012), doi: 10.1038/srep00792.

    [25] F. C. Shi, J. Menga, C. Deng, "Facile synthesis of magnetic graphene and carbon nanotube composites as a novel matrix and adsorbent for enrichment and detection of small molecules by MALDI-TOF MS," J. Mater. Chem. 22, 20778–20785 (2012), doi: 10.1039/C2JM34745H.

    [26] A. Kuznetsov, A. Frorip, I. Kudrjavtseva, V. Nagirny, M. Ots-Rosenberg, I. Romet, A. Sünter, J. Vassil'chenko, E-MRS 2013 Fall Meeting, Conference Program, G.VI 12 Symp G, http://www.emrsstrasbourg. com/index.php option=com abstract& task=view&id=228&day=2013-0919&year=2013 &Itemid=99999999&id season=10.

    [27] Y.-M. Long, Ch.-H. Zhou, Zh.-L. Zhang, Zh.-Q. Tian, L. Bao, Y. Lin, D.-W. Pang, "Shifting and non-shifting fluorescence emitted by carbon nanodots," J. Mater. Chem. 22, 5917–5920 (2012).

    [28] R. Singh, A. Barden, T. Mori, L. Beilin, "Advanced glycation end-products: A review," Diabetologia 44, 129–146 (2001).

    [29] http://en.wikipedia.org/wiki/Amadori rearr angement.

    [30] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York (2006), pp. 63–88.

    [31] P. Yu, X. Wen, Y.-R. Toh and J. Tang, "Temperature dependent fluorescence in carbon dots," J. Phys. Chem. 116, 25552–25557 (2012).

    [32] G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-An Chen, I-Sh. Chen, Ch.-W. Chen, M. Chhowalla, "Blue photoluminescence from chemically derived graphene oxide," Adv. Mater. 22, 505–509 (2010).

    [33] S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong, S. Jeon, "Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups," ACS NANO 7, 1239–1245 (2013).

    [34] H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, Z. Kang, "Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property," Dalton Trans. 41, 9526–9531 (2012).

    [35] B. T. Kelly, P. L. Walker, Jr, "Theory of thermal expansion of a graphite crystal in the semi-continuum model," Carbon 8, 211–226 (1970).

    [36] USDA Database for the Flavonoid Content of Selected Foods, Release 3.1, Prepared by Seema Bhagwat, David B. Haytowitz and Joanne M. Holden (ret.), Available at http://www.ars.usda. gov/SP2UserFiles/Place/80400525/Data/Flav/ Flav3-1.pdf.

    [37] D. R. Dreyer, S. Park, Ch. W. Bielawski, R. S. Ruoff, "The chemistry of graphene oxide," Chem. Soc. Rev. 39, 228–240 (2010).

    [38] A. Bianco, "Graphene: Safe or toxic The two faces of the medal," Angew. Chem. Int. Ed. 52, 4986–4997 (2013).

    [39] J. Zaia, "Mass spectrometry and glycomics," J. Integr. Biol. 14, 401–418 (2010).

    [40] L. Tang, X. Li, R. Ji, K. S. Teng, G. Tai, J. Ye, C. Wei, S. P. Lau, "Bottom-up synthesis of large-scale graphene oxide nanosheets," J. Mater. Chem. 22, 5676–5683 (2012).

    [41] V. C. Sanchez, A. Jachak, R. H. Hurt, A. B. Kane, "Biological interactions of graphene-family nanomaterials — An interdisciplinary review," Chem. Res. Toxicol. 25, 15–34 (2012), doi: 10.1021/tx200339h.

    [42] A. Kuznetsov, A. Frorip, J. Kozlova, M. Pooga, M. Ots-Rosenberg, A. Sünter, "Visible auto-fluorescence substance in biological fluids: Source or outcome of pathological processes " The 2nd Int. Conf. Bioinspired and Biobased Chemistry&Materials, 15–17 October 2014, Nice, http://sites.unice.fr/ site/tarrade/conferencesnice2014/downloads/Full- Program.pdf.

    [43] C. Basile, C. Lomonte, "Kt/V urea does not tell it all," Nephrol. Dial. Transplant. 0, 1–4 (2012), doi: 10.1093/ndt/gfr786.

    [44] F. Duranton, G. Cohen, R. De Smet, M. Rodrigues, J. Jankowski, R. Vanholder, A. Argiles, "Normal and pathologic concentration of uremic toxins," J. Am. Soc. Nephrol. 23, 1258–1270 (2012).

    Artur I. Kuznetsov, Aleksander Frorip, Jekaterina Kozlova, Vitali Nagirnyi, Mai Ots-Rosenberg, Ivo Romet, Alar Sünter. Visible fluorescence of biological fluids as a renal failure marker: New integrative approach[J]. Journal of Innovative Optical Health Sciences, 2015, 8(4): 1550030
    Download Citation