• High Power Laser Science and Engineering
  • Vol. 11, Issue 4, 04000e51 (2023)
Zhipeng Liu1, Zhusong Mei1, Defeng Kong1, Zhuo Pan1, Shirui Xu1, Ying Gao1, Yinren Shou1, Pengjie Wang1, Zhengxuan Cao1, Yulan Liang1, Ziyang Peng1, Jiarui Zhao1, Shiyou Chen1, Tan Song1, Xun Chen1, Tianqi Xu1, Xueqing Yan1、2、3, and Wenjun Ma1、2、3、*
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, China
  • 2Beijing Laser Acceleration Innovation Center, Beijing, China
  • 3Institute of Guangdong Laser Plasma Technology, Guangzhou, China
  • show less
    DOI: 10.1017/hpl.2023.33 Cite this Article Set citation alerts
    Zhipeng Liu, Zhusong Mei, Defeng Kong, Zhuo Pan, Shirui Xu, Ying Gao, Yinren Shou, Pengjie Wang, Zhengxuan Cao, Yulan Liang, Ziyang Peng, Jiarui Zhao, Shiyou Chen, Tan Song, Xun Chen, Tianqi Xu, Xueqing Yan, Wenjun Ma. Synchronous post-acceleration of laser-driven protons in helical coil targets by controlling the current dispersion[J]. High Power Laser Science and Engineering, 2023, 11(4): 04000e51 Copy Citation Text show less

    Abstract

    Post-acceleration of protons in helical coil targets driven by intense, ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’ self-discharge. The acceleration length of protons can exceed a few millimeters, and the acceleration gradient is of the order of GeV/m. How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration. In this paper, we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons. We propose a scheme using a two-stage helical coil to control the current dispersion. With optimized parameters, the energy gain of protons is increased by four times. Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser, or more than 100 MeV using a petawatt laser, by controlling the current dispersion.
    $$\begin{align}\frac{\partial^2J\left(x,t\right)}{\partial {x}^2}= LC\frac{\partial^2J\left(x,t\right)}{\partial {t}^2},\end{align}$$ ((1))

    View in Article

    $$\begin{align}{k}^2={\omega}^2{L}_{\omega }{C}_{\omega }.\end{align}$$ ((2))

    View in Article

    $$\begin{align}{k_x}^2={\omega}^2{L}_a{C}_a,\end{align}$$ ((3))

    View in Article

    $$\begin{align}{L}_a&=\dfrac{\mu }{2\pi}\dfrac{{k_x}^2}{\beta^2{\gamma}^2}\left[{I}_1\left(\gamma a\right){K}_1\left(\gamma a\right)\right], \nonumber\\{C}_a&=2\pi /\left[{I}_0\left(\gamma a\right){K}_0\left(\gamma a\right)\right],\end{align}$$ ((4))

    View in Article

    $$\begin{align}\frac{\omega }{k_xc}=\sqrt{\frac{\beta }{\beta^2+D}}, \quad D=\frac{{I}_1\left(\gamma a\right){K}_1\left(\gamma a\right)}{{I}_0\left(\gamma a\right){K}_0\left(\gamma a\right)}.\end{align}$$ ((5))

    View in Article

    Zhipeng Liu, Zhusong Mei, Defeng Kong, Zhuo Pan, Shirui Xu, Ying Gao, Yinren Shou, Pengjie Wang, Zhengxuan Cao, Yulan Liang, Ziyang Peng, Jiarui Zhao, Shiyou Chen, Tan Song, Xun Chen, Tianqi Xu, Xueqing Yan, Wenjun Ma. Synchronous post-acceleration of laser-driven protons in helical coil targets by controlling the current dispersion[J]. High Power Laser Science and Engineering, 2023, 11(4): 04000e51
    Download Citation