• Laser & Optoelectronics Progress
  • Vol. 58, Issue 21, 2124001 (2021)
Zhongyi Wu, Xiaofeng Shi*, Lizhen Ma, and Jun Ma
Author Affiliations
  • Optics and Optoelectronics Laboratory of Qingdao, Ocean University of China, Qingdao , Shandong 266100, China
  • show less
    DOI: 10.3788/LOP202158.2124001 Cite this Article Set citation alerts
    Zhongyi Wu, Xiaofeng Shi, Lizhen Ma, Jun Ma. FDTD Simulation and Evaluation Method for Large Size Aggregates of Nanoparticles[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2124001 Copy Citation Text show less
    References

    [1] Michaels A M, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules[J]. The Journal of Physical Chemistry B, 104, 11965-11971(2000).

    [2] Ngo Y H, Then W L, Shen W et al. Gold nanoparticles paper as a SERS bio-diagnostic platform[J]. Journal of Colloid and Interface Science, 409, 59-65(2013).

    [3] Fateixa S, Nogueira H I S, Trindade T. Hybrid nanostructures for SERS: materials development and chemical detection[J]. Physical Chemistry Chemical Physics, 17, 21046-21071(2015).

    [4] Zheng X S, Jahn I J, Weber K et al. Label-free SERS in biological and biomedical applications: recent progress, current challenges and opportunities[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 197, 56-77(2018).

    [5] Li Y L, Kan C X, Wang C S et al. Surface plasmon resonance coupling effect of assembled gold nanorods based on the FDTD simulation[J]. Acta Physico-Chimica Sinica, 30, 1827-1836(2014).

    [6] Xin K, Shi X F, Zhang X et al. Aggregation of gold nanoparticles based on photothermal effect and its application in surface-enhanced Raman scattering[J]. Acta Optica Sinica, 40, 1930001(2020).

    [7] Wang T Y, Wang Y Y, Lin X L et al. Ultrasensitive quantitative detection of alpha-fetoprotein based on SERS spectroscopy[J]. Chinese Journal of Lasers, 47, 0207026(2020).

    [8] Wang S. Quantitative analysis of plant hormone abscisic acid by local plasmon resonance spectroscopy[D](2019).

    [9] Ding S Y, You E M, Tian Z Q et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 46, 4042-4076(2017).

    [10] Yee K E. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 14, 302-307(1966).

    [11] Elsherbeni A Z, Demir V[M]. The finite-difference time-domain method for electromagnetics with MATLAB simulations. Yu Z Y, Transl, 1-54(2012).

    [12] Kim H C, Cheng X. SERS-active substrate based on gap surface plasmon polaritons[J]. Optics Express, 17, 17234-17241(2009).

    [13] Zhou H J. Research on complex target FDTD mesh generation and optimization[D], 1-10(2018).

    [14] Zhang D, Peng L, Shang X et al. Buoyant particulate strategy for few-to-single particle-based plasmonic enhanced nanosensors[J]. Nature Communications, 11, 2603(2020).

    [15] Hou Y X. The study of the synthesis of low dimensional Ag nanostructures and the properties of surface plasmon polaritons[D], 3-39(2012).

    [16] Dhanachandra N, Manglem K, Chanu Y J. Image segmentation using K-means clustering algorithm and subtractive clustering algorithm[J]. Procedia Computer Science, 54, 764-771(2015).

    [17] Palik E D[M]. Handbook of optical constants of solids, 286-287(1991).

    Zhongyi Wu, Xiaofeng Shi, Lizhen Ma, Jun Ma. FDTD Simulation and Evaluation Method for Large Size Aggregates of Nanoparticles[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2124001
    Download Citation