• Infrared and Laser Engineering
  • Vol. 46, Issue 2, 220002 (2017)
Lei Yu1、2, Tong Qing1, and Zhang Xinyu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201746.0220002 Cite this Article
    Lei Yu, Tong Qing, Zhang Xinyu. Light field imaging with a gradient index liquid crystal microlens array[J]. Infrared and Laser Engineering, 2017, 46(2): 220002 Copy Citation Text show less
    References

    [1] Lippmann G. Epreuves reversibles donnant la sensation du relief[J]. J Phys Theor Appl, 1908, 7(1): 821-825.

    [2] Adelson E H, Wang J Y. Single lens stereo with a plenoptic camera[J]. IEEE Trans Pattern Anal Mach Intell, 1992, 14(2): 99-106.

    [3] Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera[J]. Stanford Tech Rep, 2005, 2: 1-11.

    [4] Lumsdaine A, Georgiev T. The focused plenoptic camera[C]//Proceddings of IEEE International Conference on Computational Photography, 2009: 1-8.

    [5] Perwass C, Wietzke L. Single lens 3D-camera with extended depth-of-field[C]//Proc SPIE, 2012, 8291: 829108.

    [6] Liu Lili, Huang Tao, Cai Min, et al. Retinal imaging system with large field of view based on liquid crystal adaptive optics[J]. Optics and Precision Engineering, 2013, 21(2): 301-307.(in Chinese)

    [7] Wei Peifeng, Liu Xinyue, Lin Xudong, et al. Temporal simulation of atmospheric turbulence during adaptive optics system testing[J]. Chinese Optics, 2013, 6(6): 371-377. (in Chinese)

    [8] Huang Chong, Ouyang Yandong. Liquid crystal grating with variable and electrically controlled constants[J]. Chinese Optics, 2012, 5(3): 296-301. (in Chinese)

    [9] Zhang Ying, Zhao Haibo. Liquid crystal variable retarder attached with compensator[J]. Optics and Precision Engineering, 2009, 17(8): 1798-1803. (in Chinese)

    [10] Sato S. Liquid-crystal lens-cells with variable focal length[J]. Jpn J Appl Phys, 1979, 18(9): 1679-1684.

    [11] Nose T, Sato S. A liquid crystal microlens obtained with a non-uniform electric field[J]. Liq Cryst, 1989, 5(5): 1425-1433.

    [12] Kao Y Y, Chao P C P, Hsueh C W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths[J]. Opt Express, 2010, 18(18): 18506-18518.

    [13] Fan Y H, Ren H, Liang X, et al. Liquid crystal microlens arrays with switchable positive and negative focal lengths[J]. J Disp Technol, 2005, 1(1): 151-156.

    [14] Kang S, Qing T, Sang H, et al. Ommatidia structure based on double layers of liquid crystal microlens array[J]. Appl Opt, 2013, 52(33): 7912-7918.

    [15] Lei Yu, Tong Qing, Zhang Xinyu, et al. Plenoptic camera based on a liquid crystal microlens array[C]//Proc SPIE, 2015, 9579: 95790T.

    [16] Tong Qing, Rong Xing, Zhang Xinyu, et al. Large-area arrayed liquid crystal device for measuring and regulating polarization state of incident light[J]. Infrared and Laser Engineering, 2014, 43(2): 474-478. (in Chinese)

    [17] Georgiev T, Lumsdaine A. Focused plenoptic camera and rendering[J]. J of Electron Imaging, 2010, 19(2): 021106.

    [18] Lumsdaine A, Lin L, Willcock J, et al. Fourier analysis of the focused plenoptic camera[C]//Proc SPIE, 2013, 8667: 86671M.

    [19] Hahne C, Aggoun A, Haxha S, et al. Light field geometry of a standard plenoptic camera[J]. Opt Express, 2014, 22(22): 26659-26673.

    [20] Zhang W, Guo X, You S, et al. Computer simulation for hybrid plenoptic camera super-resolution refocusing with focused and unfocused mode[J]. Infrared and Laser Engineering, 2015, 44(11): 3384-3392. (in Chinese)

    Lei Yu, Tong Qing, Zhang Xinyu. Light field imaging with a gradient index liquid crystal microlens array[J]. Infrared and Laser Engineering, 2017, 46(2): 220002
    Download Citation