• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 5, 567 (2020)
Hui-Qi BIAN1、2, Chao-Hai DU2、*, Shi PAN2, and Pu-Kun LIU2、*
Author Affiliations
  • 1Beijing Institution of Radio Measurement, Beijing100854, China
  • 2School of Electronics Engineering and Computer Science, Peking University, Beijing100871, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.05.006 Cite this Article
    Hui-Qi BIAN, Chao-Hai DU, Shi PAN, Pu-Kun LIU. Design and analysis of a broadband quasi-optical mode converter with a Denisov launcher[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 567 Copy Citation Text show less
    References

    [1] M I Petelin. One century of cyclotron radiation. IEEE Trans Plasma Sci, 27, 294-302(1999).

    [2] M Kartikeyan, E Borie, O Drumm et al. Design of a 42-GHz 200-kW gyrotron operating at the second harmonic. IEEE Trans Microwave Theory Tech, 52, 686-92(2004).

    [3] M K Thumm. Recent developments on high-power gyrotrons—Introduction to this special issue. J Infrared Millim Terahertz Waves, 32, 241-52(2011).

    [4] S Pan, C-H Du, X-B Qi et al. Broadband terahertz-power extracting by using electron cyclotron maser. Sci Rep, 7, 7265(2017).

    [6] S N Vlasov, I Orlova. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam. Radiophys Quant Electron, 17, 115-9(1974).

    [7] J E. Gyrotron oscillators-Their principles and practice. UK: Taylor & Francis(1993).

    [8] G Denisov, A Kuftin, V Malygin et al. 110 GHz gyrotron with a built-in high-efficiency converter. Int J Electron, 72, 1079-91(1992).

    [9] S Sabchevski, I Zhelyazkov, E Benova et al. Quasi-optical converters for high-power gyrotrons: A brief review of physical models, numerical methods and computer codes(2006).

    [10] T Idehara, S P Sabchevski. Development and applications of high—Frequency gyrotrons in FIR FU covering the sub-THz to THz range. J Infrared Millim Terahertz Waves, 33, 667-94(2012).

    [11] A Samartsev, K A Avramidis, G Gantenbein et al. Efficient Frequency Step-Tunable Megawatt-Class $ D $-Band Gyrotron. IEEE Trans Electron Devices, 62, 2327-32(2015).

    [12] C-H Du, X-B Qi, P-K Liu. Theoretical study of a broadband quasi-optical mode converter for pulse gyrotron devices. IEEE Trans Plasma Sci, 44, 2348-55(2016).

    [13] O Prinz, A Arnold, G Gantenbein et al. Highly efficient quasi-optical mode converter for a multifrequency high-power gyrotron. IEEE Trans Electron Devices, 56, 828-34(2009).

    [14] J Jin, M Thumm, B Piosczyk et al. Theoretical investigation of an advanced launcher for a 2-MW 170-GHz TE/sub 34, 19/coaxial cavity gyrotron. IEEE Trans Microwave Theory Tech, 54, 1139-45(2006).

    [16] J Jin. Quasi-optical mode converter for a coaxial cavity gyrotron. Citeseer(2007).

    [17] J L Doane. Propagation and mode coupling in corrugated and smooth-wall circular waveguides. Infrared and millimeter waves, 13(1985).

    [19] J A Kong. Electromagnetic wave theory(1986).

    [20] X-B Qi, C-H Du, S Pan et al. Terahertz broadband-tunable minigyrotron with a pulse magnet. IEEE Trans Electron Devices, 64, 527-35(2017).

    [22] G Li, J Jin, R Tomasz et al. Analysis of a quasi-optical launcher toward a step-tunable 2-MW coaxial-cavity gyrotron. IEEE Trans Plasma Sci, 38, 1361-1368(2010).

    Hui-Qi BIAN, Chao-Hai DU, Shi PAN, Pu-Kun LIU. Design and analysis of a broadband quasi-optical mode converter with a Denisov launcher[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 567
    Download Citation