• Advanced Photonics
  • Vol. 1, Issue 2, 026001 (2019)
Bo Qiang1、2, Alexander M. Dubrovkin1, Harish N. S. Krishnamoorthy1, Qian Wang3, Cesare Soci1, Ying Zhang4, Jinghua Teng3, and Qi Jie Wang1、2、*
Author Affiliations
  • 1Nanyang Technological University, Centre for Disruptive Photonic Technologies, The Photonic Institute, School of Physical and Mathematical Sciences, Singapore
  • 2Nanyang Technological University, Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, Singapore
  • 3Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Singapore
  • 4Agency for Science, Technology and Research, Institute of Manufacturing Technology, Singapore
  • show less
    DOI: 10.1117/1.AP.1.2.026001 Cite this Article Set citation alerts
    Bo Qiang, Alexander M. Dubrovkin, Harish N. S. Krishnamoorthy, Qian Wang, Cesare Soci, Ying Zhang, Jinghua Teng, Qi Jie Wang. High Q-factor controllable phononic modes in hybrid phononic–dielectric structures[J]. Advanced Photonics, 2019, 1(2): 026001 Copy Citation Text show less
    References

    [1] J. Christensen et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano, 6, 431-440(2011).

    [2] M. I. Stockman. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett., 93, 137404(2004).

    [3] R. F. Oulton et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics, 2, 496-500(2008).

    [4] N. Liu et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater., 10, 631-636(2011).

    [5] N. Liu et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett., 10, 2342-2348(2010).

    [6] D. Rodrigo et al. Mid-infrared plasmonic biosensing with graphene. Science, 349, 165-168(2015).

    [7] Y. Yao et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett., 14, 6526-6532(2014).

    [8] S. Kim et al. Electronically tunable perfect absorption in graphene. Nano Lett., 18, 971-979(2018).

    [9] J. Kern et al. Nanoantenna-enhanced light-matter interaction in atomically thin WS2. ACS Photonics, 2, 1260-1265(2015). https://doi.org/10.1021/acsphotonics.5b00123

    [10] C. Ciracì et al. Probing the ultimate limits of plasmonic enhancement. Science, 337, 1072-1074(2012).

    [11] J.-J. Greffet et al. Coherent emission of light by thermal sources. Nature, 416, 61-64(2002).

    [12] J. D. Caldwell et al. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett., 13, 3690-3697(2013).

    [13] T. Wang et al. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett., 13, 5051-5055(2013).

    [14] T. Wang et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics, 4, 1753-1760(2017).

    [15] Y. Chen et al. Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications. ACS Photonics, 1, 718-724(2014).

    [16] J. D. Caldwell et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun., 5, 5221(2014).

    [17] A. J. Giles et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett., 16, 3858-3865(2016).

    [18] M. Tamagnone et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv., 4, eaat7189(2018).

    [19] Z. Zheng et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater., 30, 1705318(2018).

    [20] W. Ma et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 562, 557-562(2018).

    [21] P. Li et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater., 15, 870-875(2016).

    [22] A. M. Dubrovkin et al. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. Nat. Commun., 9, 1762(2018).

    [23] N. Ocelic, R. Hillenbrand. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nat. Mater., 3, 606-609(2004).

    [24] Y. Yang et al. Low-loss plasmonic dielectric nanoresonators. Nano Lett., 17, 3238-3245(2017).

    [25] L.-W. Chou et al. Tunable mid-infrared localized surface plasmon resonances in silicon nanowires. J. Am. Chem. Soc., 134, 16155-16158(2012).

    [26] G. Dayal et al. High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites. J. Appl. Phys., 122, 073101(2017).

    [27] A. Tittl et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105-1109(2018).

    [28] M. A. Gorlach et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun., 9, 909(2018).

    [29] W. Ren et al. Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor. Opt. Express, 21, 10251(2013).

    [30] M. Sarkar et al. Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration. ACS Photonics, 2, 237-245(2015).

    [31] S. Balci, E. Karademir, C. Kocabas. Strong coupling between localized and propagating plasmon polaritons. Opt. Lett., 40, 3177(2015).

    [32] C. V. Hoang et al. Interplay of hot electrons from localized and propagating plasmons. Nat. Commun., 8, 771(2017).

    [33] C. R. Gubbin et al. Strong and coherent coupling between localized and propagating phonon polaritons. Phys. Rev. Lett., 116, 246402(2016).

    [34] C. R. Gubbin, S. A. Maier, S. De Liberato. Theoretical investigation of phonon polaritons in SiC micropillar resonators. Phys. Rev. B, 95, 35313(2017).

    CLP Journals

    [1] Jamie M. Fitzgerald, Vincenzo Giannini. Surface phonon polaritonics made simple: great as plasmonics but lower losses[J]. Advanced Photonics, 2019, 1(2): 020503

    [2] Linpeng Gu, Liang Fang, Qingchen Yuan, Xuetao Gan, Hao Yang, Xutao Zhang, Juntao Li, Hanlin Fang, Vladislav Khayrudinov, Harri Lipsanen, Zhipei Sun, Jianlin Zhao. Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions[J]. Photonics Research, 2020, 8(11): 1734

    Bo Qiang, Alexander M. Dubrovkin, Harish N. S. Krishnamoorthy, Qian Wang, Cesare Soci, Ying Zhang, Jinghua Teng, Qi Jie Wang. High Q-factor controllable phononic modes in hybrid phononic–dielectric structures[J]. Advanced Photonics, 2019, 1(2): 026001
    Download Citation